

MCS 352 Complex Calculus

1st Midterm March 29, 2010 17:40-19:30

Surname	:	
Name	:	
ID #	:	
Department	•	
Section	•	
Instructor	•	
	·	
Signature	:	

- The exam consists of 5 questions of equal weight.
- Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- \bullet Show all your work. Correct answers without sufficient explanation might <u>not</u> get full credit.
- $\bullet\,$ Calculators are $\underline{\mathrm{not}}$ allowed.

GOOD LUCK!

Please do $\underline{\text{not}}$ write below this line.

Q1	Q2	Q3	Q4	Q5	TOTAL
20	20	20	20	20	100

Question 1.

(a) Let $f(x+iy) = x^4 - 6x^2y^2 + y^4 + 4x^3y^2 - 4xy^3i + y^2i$. Find the region <i>L</i>)
(i) where f is differentiable,	(7 points)
(ii) where f is analytic.	(3 points)
(b) Let $u(x, y) = x^2 - y^2 + x - y$.	
(i) Show that u is harmonic everywhere.	(4 points)

(ii) Find an analytic function f so that $\operatorname{Re}(f(z)) = u(x, y)$ and f(1+i) = 0? (6 points)

Answer 1.

Question 2.

(a) Evaluate
$$\lim_{n \to \infty} \frac{in^2 - in + 1 - 3i}{(2n + 4i - 3)(n - i)}$$
 if it exists. (10 points)

(b) Find the radius of convergence of the power series $\sum_{n=0}^{\infty} (1 + (-1)^n)^n z^n$. (10 points)

Answer 2.

Question 3.

(a) Solve the equation $e^{iz} - e^{-iz} = 2i$.	(10 points)
(b) Find the image of the rectangle $\{(x, y): 0 \le x \le 1, 0 \le y \le \frac{\pi}{4}\}$ under e^z .	(10 points)

Answer 3.

Question 4.

(a) (i) Find all values of $\log(-\sqrt{3}-i)$. (5 points) (ii) Find the principal value of $(1+i)^{2-i}$. (5 points) (b) (i) Write $f(z) = \frac{z+i}{2}$

$$f(z) = \frac{1}{z^2 + 1}$$
in the form $u(x, y) + iv(x, y)$. (5 points)
(ii) Write $\left(\frac{1+i}{\sqrt{2}}\right)^{2010}$ in $a + bi$ form. (5 points)

Answer 4.

Question 5.

(a) Find the image of |z - 1| = 1 under the mapping $w = \frac{1}{z}$.

(10 points)

(b) Let

$$f(z) = \begin{cases} \frac{z \operatorname{Re}(z)}{|z|} & z \neq 0, \\ 0 & z = 0. \end{cases}$$
 at the origin. (10 points)

Show that f is continuous at the origin.

Answer 5.

MCS 352 Complex Calculus

2nd Midterm May 3, 2010 17:40-19:30

Surname	:	
Name	:	
ID #	:	
Department	•	
Section		
Instructor	•	
	•	
Signature	:	

- The exam consists of 5 questions of equal weight.
- Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- \bullet Show all your work. Correct answers without sufficient explanation might <u>not</u> get full credit.
- $\bullet\,$ Calculators are <u>not</u> allowed.

GOOD LUCK!

Please do \underline{not} write below this line.

Q1	Q2	Q3	Q4	Q5	TOTAL
20	20	20	20	20	100

Question 1.

(a) Prove that

$$\arctan z = \frac{i}{2} \log \left(\frac{i+z}{i-z} \right).$$

(10 points)(10 points)

(b) Solve the equation $\tan z = i\sqrt{3}$.

Answer 1.

Question 2.

(a) Evaluate

$$\int\limits_C e^{\bar{z}} \, dz,$$

where C is the line segment from the origin to the point 1 + i. (10 points)

(b) Evaluate

$$\int_C \cos z \, dz,$$

where C is the polygonal path from 0 to 1 + i that consists of the line segments from 0 to 1 and 1 to 1 + i. (10 points)

Answer 2.

Question 3.

(a) Let C be the circle |z - 2i| = 1. Evaluate

(i)
$$\oint_C \frac{z+i}{z^3+2z^2} dz.$$
 (5 points)
(ii) $\oint_C \frac{2}{2z-3i} dz.$ (5 points)

(b) Let C denote the boundary of the square whose sides along the lines $x = \pm 2$ and $y = \pm 2$. Evaluate

$$\oint_C \frac{\cos z}{z^2(z^2+8)} \, dz$$

(10 points)

Answer 3.

Question 4.

- (a) Find the Laurent series expansion of $f(z) = \frac{1-z}{z-3}$ which is valid in |z-1| > 2.
- (b) Find the first five terms of the Maclaurin series of $f(z) = \tan z$ which is valid in $|z| < \frac{\pi}{2}$. (10 points)

Answer 4.

Question 5.

- (a) Locate the zeros and poles of $f(z) = \frac{\sin z}{z^2 + z}$ and determine their orders. (10 points)
- (b) Determine whether the function f(z) defined by

$$f(z) = \begin{cases} z \sin\left(\frac{1}{z}\right) & \text{when } z \neq 0\\ 0 & \text{when } z = 0 \end{cases}$$

(10 points)

is continuous or discontinuous at z = 0.

Answer 5.

MCS 352 Complex Calculus

Final June 8, 2010 09:00-10:50

Surname	:	
Name	:	
ID #	:	
Department	•	
Section	•	
Instructor	•	
	·	
Signature	:	

- The exam consists of 5 questions.
- Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- \bullet Show all your work. Correct answers without sufficient explanation might <u>not</u> get full credit.
- Calculators are <u>not</u> allowed.

GOOD LUCK!

Please do \underline{not} write below this line.

Q1	Q2	Q3	Q4	Q5	TOTAL
30	20	20	30	20	120

Question 1. In each part, classify the isolated singularity of f at z = 0 and find the corresponding residue.

(a)
$$f(z) = \frac{1}{z + z^2}$$
. (10 points)

(b)
$$f(z) = z \cos\left(\frac{1}{z}\right)$$
. (10 points)

(b)
$$f(z) = \frac{z - \sin z}{z}$$
. (10 points)

Answer 1.

Question 2. In each part, evaluate

(a)
$$\oint_{|z|=3} \frac{1}{z^5 - z^3} dz.$$
 (10 points)
(b)
$$\oint_{|z|=1} \frac{z^6}{1 - 2z^8} dz.$$
 (10 points)

Answer 2.

Question 3. Evaluate

$$\int_0^{2\pi} \frac{\sin\theta}{2 - \cos\theta} \, d\theta.$$

Answer 3.

Question 4. In each part, evaluate

(a) P.V.
$$\int_{-\infty}^{\infty} \frac{1}{x^4 - 1} dx.$$
 (15 points)
(b) P.V. $\int_{0}^{\infty} \frac{\cos x}{x^4 - 1} dx.$ (15 points)

Answer 4.

Question 5.

- (a) Determine the number of roots of the equation $z^6 5z^4 + 10 = 0$ on
 - (i) |z| < 1. (3 points)

 (ii) |z| < 2. (3 points)

 (iii) |z| < 3. (3 points)

 (a) |z| < 3. (3 points)
 - (iv) |z| > 3. (3 points)
- (b) Determine the value of $\triangle_C \arg f(z)$ if C is the circle |z| = 2, described in the positive sense and $f(z) = \frac{(z^3 + 2)(z - 1)}{z^5(z^2 + 5)}$. (8 points)

Answer 5.