ÇANKAYA UNIVERSITY

Department of Mathematics and Computer Science

MATH 352 Complex Analysis II
$1{ }^{\text {st }}$ Midterm
March 13, 2008
12:40-14:30

- The exam consists of 4 questions of equal weight.
- Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- Show all your work. Correct answers without sufficient explanation might not get full credit.
- Calculators are not allowed.

GOOD LUCK!

Please do not write below this line.

Q1	Q2	Q3	Q4	TOTAL
25	25	25	25	100

Question 1.
(a) Evaluate $\oint_{C} \frac{\sin \frac{1}{z+5}}{e^{z}\left(z^{2}+8\right)} d z$ where $C=\{z:|z-1|=1\}$.
(12.5 points)
(b) Evaluate $\int_{C} \cosh z d z$ where C is the contour which connects 7 and $i \pi$ as shown in the figure below.
(12.5 points)

Answer 1.
(a) $\frac{\sin \frac{1}{z+5}}{e^{z}\left(z^{2}+8\right)}$ is analytic everywhere except at the
points $-5,2 \sqrt{2} i,-2 \sqrt{2} i$ and none of them belong to C and are inside C, then by Caucly-Goursat theorem,

$$
{ }_{C}^{8} \frac{\sin \frac{1}{z+5}}{e^{z}\left(z^{2}+8\right)} d z=0
$$

(b) Since coshz is analytic in a region containing C (actually, cosh is analytic everywhere) and $\frac{d}{d i} \sinh t=\cosh t$, by the fundamental theorem of integration, we have

$$
\int_{C} \cosh z d z=\int_{7}^{i \pi} \cosh z d z=\left.\sinh z\right|_{7} ^{i \pi}
$$

$$
=\frac{e^{i x}-e^{-i x}}{2}-\frac{e^{7}-e^{-7}}{2}
$$

$$
=\frac{(-1)-(-1)}{2}+\frac{e^{-7}-e^{7}}{2}
$$

$$
=\frac{e^{-7}-e^{7}}{2}
$$

Question 2. Evaluate
(a) $\oint_{C} \frac{d z}{z^{2}+1}$ where C is the contour shown below.

(b) $\oint_{C} \frac{e^{z}}{\left(z^{2}-2 z+1\right)\left(z^{2}+9\right)} d z$ where $C=\{z:|z|=2\}$.
(12.5 points)

Answer 2.
(a) clearly, $I=\mathcal{C}_{C} \frac{d z}{z^{2}+1}=\oint_{c_{1}} \frac{d z}{z^{2}+1}+\oint_{c_{4}} \frac{d z}{z^{2}+1}+\oint_{c_{2}} \frac{d z}{z^{2}+1}+\mathcal{C}_{c_{3}} \frac{d z}{z^{2}+1}$

Since $\frac{1}{z^{2}+1}$ has singularities only at i, and $-i, \quad \int_{c_{2}} \frac{d z}{z^{2}+1}=0$, and $\quad \$_{C_{4}} \frac{d z}{z^{2}+1}=0$. Since $\quad \frac{1}{z^{2}+1}=\frac{1}{(z+i)(z-i)}=\frac{i}{2}\left(\frac{1}{z-i}-\frac{1}{z+i}\right)$,

$$
\begin{aligned}
& \mathbb{C}_{c_{1}} \frac{d z}{z^{2}+1}=\frac{i}{2}\left(\mathbb{S}_{c_{1}} \frac{1}{z-i} d z-\mathcal{S}_{c_{1}} \frac{1}{z+i} d z\right)=\frac{i}{2} \cdot 2 \pi i=-\pi \text {, and } \\
& \S_{c_{3}} \frac{d z}{z^{2}+1}=\frac{i}{2}\left(\oint_{c_{3}} \frac{1}{z-i} d z-\sum_{c_{3}} \frac{1}{z+i} d z\right)=\frac{i}{2} \cdot 2 x i=-\pi \text {, and so, } \\
& I=-2 \pi .
\end{aligned}
$$

(b) Let $f(z)=\frac{e^{z}}{z^{2}+9}$. Clearly, f is analytic inside and on C,

Then by Cauchy integral formula for derivatives,

$$
f^{\prime}(1)=\frac{1}{2 \pi i} \oiint_{c} \frac{f(z)}{(z-1)^{2}} d z=\frac{1}{2 \pi i} \wp_{C} \frac{e^{z}}{\left(z^{2}-2 z+1\right)\left(z^{2}+9\right)} d z=\frac{I}{2 \pi i} .
$$

Thus, $I=2 \pi i f^{\prime}(1)=\left.2 \pi i \cdot \frac{e^{z}\left(z^{2}+9\right)-2 z e^{z}}{\left(z^{2}+9\right)^{2}}\right|_{z=1}=2 x i \cdot \frac{8 e}{100}=\frac{4 \pi e i}{25}$.

Question 3.
(a) Prove the minimum modulus theorem: Let $f(z)$ be analytic inside and on a simple closed curve C. Prove that if $f(z) \neq 0$ inside C, then $|f(z)|$ must assume its minimum value on C.
(12.5 points)
(b) Give an example to show that if $f(z)$ is analytic inside and on a simple closed curve C and $f(z)=0$ at some point inside C, then $|f(z)|$ need not assume its minimum value on C. (12.5 points)

Answer 3.
(a) If $f\left(z_{0}\right)=0$ for some $z_{0} \in C$, then there is nothing to prove. If $f(z) \neq 0 \quad \forall z \in C$, set $g(z)=\frac{1}{f(z)}$. Then g is analytic inside and on C. And by maximum modulus theorem, $I g(t) \mid$ takes its maximum value on C and hence $|f(t)|$ takes its minimum value on $C I$
(b) Let $f(z)=z$ and $C=\{z \in \mathbb{C}:|z|=1\}$. clearly, f is analytic inside and on C and $f(0)=0$. Now, $|f(z)|$ assumes its minimum value at 0 which is inside C not on C.

Question 4.
(a) Find the Taylor series centered at 2 for

$$
f(z)=\frac{2-z}{z-4}
$$

and state where it converges to $f(z)$.
(12.5 points)
(b) What is the largest circle within which the Maclaurin series for the function $\tan z$ converges to $\tan z$? Write the first two nonzero terms of that series.

Answer 4.
(a) Remember that $\quad \sum_{n=0}^{\infty} \omega^{n}=\frac{1}{1-\omega}, \quad|\omega|<1$.

So, $f\left(x^{\prime}\right)=\frac{2-z}{z-4}=\frac{2-z}{z-2-2}=\frac{z-2}{2-(z-2)}=\frac{z-2}{2} \cdot \frac{1}{1-\frac{z-2}{2}}$
Set $w=\frac{z-2}{2}$ in $(*)$. Then, $f(z)=\frac{z-2}{2} \sum_{n=0}^{\infty}\left(\frac{z-2}{2}\right)^{n}$ if $\left|\frac{z-2}{2}\right|<1$.
Therefore $\quad f(z)=\sum_{n=0}^{\infty} \frac{1}{2^{n+1}}(z-2)^{n+1} \quad$ for $\quad|z-2|<2$.
(b) $\tan t=\frac{\sin t}{\cos t}$ is analytic everywhere except at the
points $z=\left(n+\frac{1}{2}\right) \pi, n \in \mathbb{Z}$. Thus, the nearest singular points to the center (=origin) are $\pm \frac{\pi}{2}$. Therefore, the Mailaurin series for $\tan t$ converges in $|z|<\frac{\pi}{2}$, and in no larger disk.

Sine $f(t)=\tan z=\sum_{n=0}^{\infty} a_{n} z^{n}$ where $a_{n}=\frac{f^{(n)}(0)}{n!}$,

$$
\begin{aligned}
& a_{0}=\tan 0=0, \quad a_{1}=\left.\frac{d}{d t} \tan t\right|_{z=0}=\sec ^{2} 0=1 \neq 0, \\
& a_{2}=\left.\frac{d^{2}}{d z^{2}} \tan z\right|_{z=0}=\left.2 \sec ^{2} t \tan z\right|_{z=0}=2 \sec ^{2} 0 \tan 0=0, \text { and } \\
& a_{3}=4 \sec z \sec z \tan z \tan t+\left.2 \sec ^{2} z \sec ^{2} t\right|_{z=0}=2 \neq 0 \text {. so the } \\
& \text { first two non zero } \quad \text { terms are } z+\frac{2 z^{3}}{3!}=z+\frac{z^{3}}{3} .
\end{aligned}
$$

ÇANKAYA UNIVERSITY

Department of Mathematics and Computer Science

MATH 352 Complex Analysis II
$2^{\text {nd }}$ Midterm
April 24, 2008
12:40-14:30

- The exam consists of 5 questions of equal weight.
- Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- Show all your work. Correct answers without sufficient explanation might not get full credit.
- Calculators are not allowed.

GOOD LUCK!

Please do not write below this line.

Q1	Q2	Q3	Q4	Q5	TOTAL
20	20	20	20	20	100

Question 1. Expand $f(z)=\frac{1}{z^{2}-5 z+6}$ in a Laurent series valid for
(a) $|z|<2$.
(b) $2<|z|<3$.
(c) $|z|>3$.
(5 points)
(5 points)
(d) $0<|z-2|<1$.
(5 points)
(5 points)
Answer 1.
Recall that $\quad \sum_{n=0}^{\infty} \omega^{n}=\frac{1}{1-\omega},|\omega|<1$
(*)

And note that $f(z)=-\frac{1}{z-2}+\frac{1}{z-3}$.
(a)

$$
\begin{aligned}
f(z)=\frac{1}{2-z}-\frac{1}{3-z} & =\frac{1}{2} \cdot \frac{1}{1-\frac{z}{2}}-\frac{1}{3} \cdot \frac{1}{1-\frac{z}{3}} \\
& =\frac{1}{2} \sum_{n=0}^{\infty}\left(\frac{z}{2}\right)^{n}-\frac{1}{3} \sum_{n=0}^{\infty}\left(\frac{z}{3}\right)^{n}
\end{aligned}
$$

(b)

$$
\begin{aligned}
f(z)=-\frac{1}{z-2}-\frac{1}{3-z} & =-\frac{1}{z} \cdot \frac{1}{1-\frac{2}{z}}-\frac{1}{3} \cdot \frac{1}{1-\frac{z}{3}} \\
& =-\frac{1}{z} \sum_{n=0}^{\infty}\left(\frac{2}{z}\right)^{n}-\frac{1}{3} \sum_{n=0}^{\infty}\left(\frac{z}{3}\right)^{n}
\end{aligned}
$$

(c)

$$
\begin{aligned}
f(z)=-\frac{1}{z-2}+\frac{1}{z-3} & =-\frac{1}{z} \cdot \frac{1}{1-\frac{2}{z}}+\frac{1}{z} \cdot \frac{1}{1-\frac{3}{z}} \\
& =-\frac{1}{z} \sum_{n=0}^{\infty}\left(\frac{2}{z}\right)^{n}+\frac{1}{z} \sum_{n=0}^{\infty}\left(\frac{3}{z}\right)^{n}
\end{aligned}
$$

(d)

$$
\begin{aligned}
f(z)=-\frac{1}{z-2}+\frac{1}{(z-2)-1} & =-\frac{1}{z-2}-\frac{1}{1-(z-2)} \\
& =-\frac{1}{z-2}-\sum_{n=0}^{\infty}(z-2)^{n} .
\end{aligned}
$$

Question 2. Find and classify all the zeros and singularities of f and calculate the residue of f at each singular point.
(a) $f(z)=\sin \frac{1}{z}$.
(10 points)
(b) $f(z)=\frac{\tan z}{z}$.
(10 points)
Answer 2.
(a) $\sin \frac{1}{z}=0 \Rightarrow \frac{1}{z}=n \pi$ for some $n \in \mathbb{Z}$ or equivalently,
$z=\frac{1}{n \pi}, n \in \mathbb{Z} \backslash\{0\}$. Since $\frac{d}{d t} \sin \frac{1}{z}=-\frac{1}{z^{2}} \cos \frac{1}{z}$ and
$-(n \pi)^{2} \cos (n x) \neq 0$ for $n \in \mathbb{Z} \backslash\{0\}$ all zeros are simple.

Since $\quad \sin \frac{1}{2}=\frac{1}{z}-\frac{1}{3!z^{3}}+\frac{1}{5!z^{5}} \cdots \quad, 0<|z|<\infty, \quad \sin \frac{1}{2}$ has an essential singularity at $z=0$ with $R_{z \rightarrow 0} \sin \frac{1}{\tau}=1$ and has no other singularity in (1)
(b) $f(t)=\frac{\sin t}{z \cos z}$. Clearly, $\sin z$ has simple zeros at $z=n \pi$,
z has a simple gers at $z=0$ and $\cos z$ has simple zeros at $z=\left(n+\frac{1}{2}\right) \pi$ for $n \in \mathbb{Z}$. Then f has a removable singularity at $z=0$, simple zeros at $z=n \pi, n \in \mathbb{Z} \mid\{0\}$ and simple poles at $z=\left(n+\frac{1}{2}\right) \pi, n \in \mathbb{Z}$. And,

$$
\begin{aligned}
\operatorname{les}_{z=\left(n+\frac{1}{2}\right) \pi} \frac{\sin z}{z \cos t} & =\lim _{z \rightarrow\left(n+\frac{1}{2}\right) \pi} \frac{\left(z-\left(n+\frac{1}{2}\right) \pi\right) \sin z}{z \cos z} \\
& =\lim _{z \rightarrow\left(n+\frac{1}{2}\right) \pi} \frac{\sin z}{z} \cdot \lim _{z \rightarrow\left(n+\frac{1}{2}\right) \pi} \frac{\left(z-\left(n+\frac{1}{2}\right) \pi\right)}{\cos z} \\
& \stackrel{\text { L.R. }}{ } \frac{(-1)^{n}}{\left(n+\frac{1}{2}\right)} \pi \lim _{z \rightarrow\left(n+\frac{1}{2}\right) \pi-\sin z} \frac{1}{\left(n+\frac{1}{2}\right)^{n} \pi} \cdot \frac{-1}{(-1)^{n}} \\
& =\frac{-1}{\left(n+\frac{1}{2}\right) \pi} .
\end{aligned}
$$

Question 3. Evaluate
(a) $\int_{0}^{2 \pi} \frac{d \theta}{3+\sin \theta}$.
(10 points)
(b) $\oint_{C} \frac{d z}{z^{2} \sinh z}$ where $C=\{z:|z|=1\}$.
(10 points)

Answer 3.
(a) Let $z=e^{j \theta}$, then $d \theta=\frac{d z}{i z}$ and $\sin \theta=\frac{z^{2}-1}{2 i z}$. Therefore, $I=\int_{0}^{2 \pi} \frac{d \theta}{3+\sin \theta}=\int_{|z|=1} \frac{1}{3+\frac{z^{2}-1}{2 i z}} \frac{d z}{i z}=2 \oint_{|z|=1} \frac{d z}{z^{2}+6 i z-1}$

$$
z^{2}+6 i z-1=0 \Rightarrow z=\frac{-6 i+(-36+4)^{1 / 2}}{2}=\frac{-6 i \pm 4 \sqrt{2} i}{2}=(-3 \pm 2 \sqrt{2}) i
$$

Only $(-3+2 \sqrt{2}) i$ is inside the unit circle, and wo $I=2.2 \pi i \operatorname{Res}_{z=(-3+2 \sqrt{2}) ;} \frac{1}{z^{2}+6 i z-1}=4 x i \lim _{z \rightarrow(-3+2 \sqrt{2}):} \frac{z-(-3+2 \sqrt{2}) i}{z^{2}+6 i z-1}$

$$
\stackrel{L R}{=} 4 \pi i \lim _{z \rightarrow(-3+2 \sqrt{2}) i} \frac{1}{2 z+6 i}=\frac{4 \pi i}{4 \sqrt{2} i}=\frac{\pi}{\sqrt{2}} .
$$

(b) z^{2} has a double zero at $z=0$ and sinh has simple zeros at $z=n \pi i, n \in \mathbb{Z}$. Thus, inside $C, \frac{1}{z^{2} \sinh t}$ has a triple zero at $z=0$ and no other singularities, and so, $I=\frac{d z}{C}=2 \pi i \sum_{z=0}^{z^{2} \sinh } \frac{1}{z^{2} \sinh z}$. $\frac{1}{z^{2} \sinh z}=\frac{1}{z^{2}\left(z+\frac{z^{3}}{3!}+\frac{z^{5}}{5!}+\cdots\right)}=\frac{1}{z^{2}} \underbrace{\frac{1}{1+\frac{z^{2}}{3!}+\frac{z^{4}}{5!}+\cdots}}_{\text {analytic at } z=0}=\frac{1}{z^{3}}\left(1+a_{1} z+a_{2} z^{2}+\cdots\right)$
$\Rightarrow \quad l_{z=0} \frac{1}{z^{2} \sin h t}=a_{2}$. Since $1=\left(1+a_{1} z+a_{2} z^{2}+a_{3} t^{3}+\cdots\right)\left(1+\frac{z^{2}}{3!}+\frac{z 4}{5!}+\cdots\right)$
$a_{1}=0$ and $\frac{1}{3!}+a_{2}=0 \Rightarrow a_{2}=-\frac{1}{6}$ and $I=2 \pi i\left(-\frac{1}{6}\right)=-\frac{\pi i}{3}$.

Question 4. Evaluate
(a) $\int_{-\infty}^{\infty} \frac{d x}{29 x^{2}+4 x+1}$.
(10 points)
(b) $\int_{-\infty}^{\infty} \frac{x \sin x}{1+x^{2}} d x$.
(10 points)
Answer 4.
(a) $29 z^{2}+4 z+1=0 \Rightarrow z=\frac{-4+(16-4.29)^{1 / 2}}{58}=-\frac{2}{29} \pm \frac{5}{29} i$
$-\frac{2}{9}+\frac{5}{28}$: belongs to the upper half plane and

$$
\begin{aligned}
\operatorname{deg}\left(29 z^{2}+4 z+1\right) & \geqslant \operatorname{deg}(1)+2 . \text { so } \\
\int_{-\infty}^{-\infty} \frac{d x}{29 x^{2}+4 x+1} & =2 x i \operatorname{Res}_{z=-\frac{2}{29}}+\frac{5}{29} i \frac{1}{29 z^{2}+4 z+1}=2 \pi i \lim _{z \rightarrow-\frac{2}{29}+\frac{5}{29}} \frac{\left(z-\left(-\frac{2}{29}+\frac{5}{29} i\right)\right)}{29 t 24 z+1} \\
& =2 \pi i \lim _{z \rightarrow-\frac{2}{29}+\frac{5}{29} ;} \frac{1}{58 z+4}=2 x i \cdot \frac{1}{10 i}=\frac{\pi}{5} .
\end{aligned}
$$

(b) $\quad \operatorname{deg}(z)+1 \leqslant \operatorname{deg}\left(1+z^{2}\right), 1+z^{2}=0 \Rightarrow z= \pm i$ and
i belongs to the upper half plane, so

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{x \sin x}{1+x^{2}} d x & =2 \pi \operatorname{Re}\left(\operatorname{Res}_{z=i} \frac{z e^{i z}}{1+z^{2}}\right) \\
& =2 \pi \operatorname{Re}\left(\lim _{z \rightarrow i} \frac{z e^{i z}}{z+i}\right) \\
& =2 \pi \operatorname{Re}\left(\frac{i e^{-1}}{2 i}\right)=\frac{\pi}{e}
\end{aligned}
$$

Question 5. Use residues to evaluate the principal value of $\int_{0}^{\infty} \frac{d x}{x^{\frac{1}{2}}(1+x)}$.
Answer 5.
Let

$$
f(z)=\frac{z^{-1 / 2}}{1+z}=\frac{e^{-\frac{1}{2} \log z}}{1+z}=\frac{e^{-\frac{1}{2}(\ln |z|+i \arg z)}}{1+z}, 0<\arg z<2 \pi
$$

and $L_{R_{1} \varepsilon}$ is the contour shown below (dat $\varepsilon<1<R$)

Then
and

So, $\quad L_{R, t} f(t) d z=2 \pi$. On the other hand,

$$
\begin{aligned}
& \int_{R_{1} \varepsilon} f(z) d z=\int_{L_{1}} f(z) d z+\int_{C_{R}} f(z) d z+\int_{L_{2}} f(z) d z+\int_{C_{E}} f(z) d z \text {, and } \\
& \int_{L} f(z) d z=\int_{\varepsilon}^{R} \frac{e^{-\frac{1}{2}(\ln x+i 0)}}{1+x} d x=\int_{\varepsilon}^{R} \frac{d x}{x^{1 / 2}(1+x)} \rightarrow \int_{0}^{\infty} \frac{d x}{x^{1 / 2}(1+x)} \text { as } R \rightarrow \infty, \varepsilon \rightarrow 0 \text {, } \\
& \int_{L_{2}} f(z) d z=\int_{R}^{\varepsilon} \frac{e^{-\frac{1}{2}(\ln x+i 2 \pi)}}{1+x} d x=\int_{R}^{\varepsilon} \frac{e^{-i x}}{x^{1 / 2}(1+x)} d x=\int_{\varepsilon}^{R} \frac{d x}{x^{1 / 2}(1+x)} \rightarrow \int_{0}^{\infty} \frac{d x}{x^{1 / 2}(1+x)} \text { as } \underset{\varepsilon \rightarrow \infty}{R \rightarrow \infty} \\
& \left|\int_{C_{R}} f(z) d z\right| \leqslant 2 x R \cdot \frac{1}{R^{1 / 2}(R-1)} \rightarrow 0 \text { as } R \rightarrow \infty \text {, } \\
& \left|\int_{C_{\varepsilon}} f(z) d z\right| \leq 2 \pi \varepsilon \cdot \frac{1}{\varepsilon^{y_{2}}(1-\varepsilon)} \rightarrow 0 \text { as } \varepsilon \rightarrow 0 \text {. } \\
& \text { Therefore } 2 \int_{0}^{\infty} \frac{d x}{x^{\frac{1}{2}(1+x)}}=2 \pi \text { and so } \\
& \int_{0}^{\infty} \frac{d x}{x^{1 / 2}(1+x)}=\pi .
\end{aligned}
$$

$$
\begin{aligned}
& \int_{L_{R, \varepsilon}} f(z) d z=2 \pi i \operatorname{Res} f(z) \\
& \operatorname{Res} f(z)=\lim _{z \rightarrow-1} z^{-1 / 2} \\
& =\lim _{z \rightarrow-1} e^{-\frac{1}{2}(\ln |z|+i \arg z)} \\
& -\frac{1}{2}(\ln 1+i \pi) \quad-i \frac{\pi}{2} \\
& =e^{\frac{1}{2}}=e^{2}=- \text { i }
\end{aligned}
$$

ÇANKAYA UNIVERSITY

Department of Mathematics and Computer Science

MATH 352 Complex Analysis II
 Final

May 28, 2008
11:00-12:50
Surname :
Name : \qquad
ID \# :
Department :
Section :
Instructor :
Signature :

- The exam consists of 5 questions of equal weight.
- Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- Show all your work. Correct answers without sufficient explanation might not get full credit.
- Calculators are not allowed.

GOOD LUCK!

Please do not write below this line.

Q1	Q2	Q3	Q4	Q5	TOTAL
20	20	20	20	20	100

Question 1. Let $f(z)=\frac{\cos z}{z^{2}}$.
(a) Find the Laurent series representation of f which is valid in $|z|>0$.
(8 points)
(b) Determine the type of the isolated singularity of f at $z=0$ and find the corresponding residue.
(6 points)
(c) Determine the type of the isolated singularity of f at $z=\infty$ and find the corresponding residue.
(6 points)
Answer 1.
(a) $\quad \cos z=\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n}}{(2 n)!}=1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\frac{z^{6}}{6!}+\cdots$
$\forall z \in \mathbb{C}$

So $\quad f(z)=\frac{\cos z}{z^{2}}=\frac{1}{z^{2}}\left(1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\frac{z^{6}}{6!}+\cdots-\right)$

$$
=\frac{1}{z^{2}}-\frac{1}{2!}+\frac{z^{2}}{4!}-\frac{z^{4}}{6!}+\cdots \quad \forall z \in \mathbb{C} \backslash\{0\}
$$

(b) f has a double pole at $z=0$ and $\operatorname{Res}_{z=0} f(z)=0$.
(c) f has an essential singularity at $t=\infty$ and

$$
\operatorname{Res}_{z=\infty} f(z)=0 .
$$

Question 2. Evaluate.
(a) $\int_{0}^{2 \pi} \frac{d \theta}{5-4 \cos \theta}$
(10 points)
(b) $\int_{0}^{\infty} \frac{d x}{x^{4}+1}$
(10 points)

Answer 2.
(a) Let $z=e^{i \theta}, 0 \leqslant \theta \leqslant 2 \pi$ and then $\cos \theta=\frac{z^{2}+1}{2 z}$ and $d \theta=\frac{d z}{i z}$.

So, $\quad \int_{0}^{2 \pi} \frac{d \theta}{5-4 \cos \theta}=\oint_{|z|=1} \frac{1}{5-\frac{4\left(z^{2}+1\right)}{2 z}} \cdot \frac{d z}{i z}$

$$
\begin{aligned}
& \left.=-\frac{2}{i} \oint_{|z|=1} \frac{d z}{4 z^{2}-10 z+4}=i\right\}_{|z|=1} \frac{d z}{2 z^{2}-5 z+2} \\
& =i\}_{|z|=1} \frac{d z}{(z-2)(2 z-1)}=i \cdot 2 \pi i \cdot \operatorname{Res}_{z=\frac{1}{2}} \frac{1}{(z-2)(2 z-1)} \\
& =-2 \pi \lim _{z \rightarrow \frac{1}{2}} \frac{\left(z-\frac{1}{2}\right)}{(z-2)(2 z-1)}=-2 \pi \cdot \frac{1}{2\left(-\frac{3}{2}\right)}=\frac{2 \pi}{3} .
\end{aligned}
$$

(b) Let $P(z)=1, Q(z)=z^{4}+1$ and $\operatorname{deg}(Q) \geqslant \operatorname{deg}(P)+2$. If $z^{4}+1=0$ then $\quad z=e^{\frac{i \pi+2 k \pi}{4}}, k=0,1,2,3$, or equivalently $z= \pm \frac{1}{\sqrt{2}} \pm \frac{i}{\sqrt{2}}$.

Then by a theorem, we have seen in class,

$$
\int_{-\infty}^{\infty} \frac{d x}{x^{4}+1}=2 \int_{0}^{\infty} \frac{d x}{x^{4}+1}=2 x i\left(\operatorname{Res}_{z=\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}} \frac{1}{z^{4}+1}+\operatorname{Res}_{z=-\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}} \frac{1}{z^{4}+1}\right)
$$

clearly, $\operatorname{Res}_{z=\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}} \frac{1}{z^{4}+1}=\lim _{z \rightarrow \frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}} \frac{\left(z-\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)\right)}{z^{4}+1}=\lim _{z \rightarrow \frac{1}{2}+\frac{i}{\sqrt{2}}} \frac{1}{4 z^{z}}$
similarly,

$$
=\lim _{z \rightarrow \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}} \frac{z}{4 z^{4}}=-\frac{1}{4}\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right) \text {, and }
$$

$$
\begin{array}{r}
\text { Res }=-\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}=\lim _{z \rightarrow-\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}} \frac{z}{4 z^{4}}=-\frac{1}{4}\left(-\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right) \text { and hence } \\
\int_{0}^{\infty} \frac{d x}{x^{4}+1}=\pi i\left(-\frac{1}{4}\right)\left[\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}-\frac{Y}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right]=\frac{\pi}{2 \sqrt{2}} .
\end{array}
$$

Question 3.
(a) Determine the value of $\triangle_{C} \arg f(z)$ if C is the circle $|z|=2$, described in the positive sense and $f(z)=\frac{\left(z^{3}+2\right)(z-1)}{z^{5}\left(z^{2}+5\right)}$
(b) Prove that all the zeros of the polynomial $z^{3}+z^{2}+3$ lie in the annulus $1<|z|<2$.
(10 points)

Answer 3.
(a)

Inside C : $\quad Z_{f}=4$

$$
P_{f}=5
$$

Then

$$
\Delta_{c} \arg f(z)=2 x(4-5)=-2 \pi
$$

(f has simple zeros at $2^{1 / 3} e^{\frac{i(\pi+2 k x)}{3}}, k=0,1,2$ and $z=1$, and p ole of order 5 at $z=0$)
(b) Let $C_{1}:|z|=1$ and $C_{2}:|z|=2$

On and inside C_{1}, let $f(z)=3$ and $g(z)=z^{3}+z^{2}$. If $z \in C_{1}$, then $|z|=1$ and $|f(z)|=3, \quad \lg (z)\left|\leq|z|^{3}+|z|^{2}=2\right.$ Sine $|g(z)|<|f(z)|$ on $C_{1}, \quad z_{f+g}=z_{f}$ ivicle fond on C, Seine f has no zeros inside $C_{1}, f+g$ has no zeros inside (and on) c_{1}.
on and imide C_{2}, let $f(z)=z^{3}$ and $g(z)=z^{2}+3$. If $z \in C_{2, t h e n ~}|z|=2$ and $|g(z)| \leqslant|z|^{2}+3=7$ and $|f(z)|=8$. Sine $|g(z)|<|f(z)|$ on $c_{2}, z_{f+g}=z_{f}$ inside and on c_{2}. Sine f has 3 zeros inside $c_{2}, f+g$ has three zeros inside (and on) C_{2}. Serine $f t g$ has no zeros inside c_{1} all three zeros must lie between c_{1} and c_{2}. Sine $z^{3}+z^{2}+3$ has exactly three zeros in all zeros lie in the annulus, $\quad|<|z|<2$.

Question 4. Show that

$$
\sum_{n=-\infty}^{\infty} \frac{1}{n^{2}+1}=\pi \operatorname{coth} \pi
$$

Answer 4.
Let $f(z)=\frac{\cot x z}{z^{2}+1}=\frac{\cos \pi z}{\left(z^{2}+1\right) \sin \pi z}$ and
$L_{n}:$

clearly,

$$
\mathbb{L}_{n} f(z) d z=2 \pi i\left(\sum_{k=-n}^{n} \operatorname{Res}_{z=k} f(z)+\operatorname{Res}_{z=i} f(z)+\operatorname{Res} f(z)\right) .
$$

On the other hand, $\quad\left|\not L_{n} f(z) d z\right| \leq \frac{4(2 n+1)}{\left(n+\frac{1}{2}\right)^{2}-1} \cdot \max _{z \in L_{n}}|\cot \pi z| \leq \frac{4(2 n+1)}{\left(n+\frac{1}{2}\right)^{2}-1} C$
for some $C>0$ that does not depend on n. So $i_{n} f(t) d z \rightarrow 0$ as $n \rightarrow \infty$. Therefore,

$$
\sum_{k=-\infty}^{\infty} \operatorname{Res}_{z=k} f(z)=-\left(\operatorname{Res}_{z=i} f(z)+\operatorname{Res}_{z=-i} f(z)\right)
$$

Note that, $\quad \operatorname{Res}_{z=k} f(z)=\lim _{z \rightarrow k} \frac{(z-k) \cos \pi z}{\left(z^{2}+1\right) \sin \pi z}=\lim _{z \rightarrow k} \frac{z-k}{\sin \pi z} \lim _{z \rightarrow k} \frac{\cos \pi z}{z^{2}+1}$

$$
\begin{aligned}
& \text { LR. } \frac{\cos \pi k}{k^{2}+1} \lim _{z \rightarrow k} \frac{1}{\pi \cos \pi z} \\
& =\frac{\cos \pi k}{k^{2}+1} \cdot \frac{1}{\pi \cos \pi k}=\frac{1}{\pi\left(k^{2}+1\right)}
\end{aligned}
$$

and wo

$$
\begin{aligned}
\sum_{k=-\infty}^{\infty} \frac{1}{k^{2}+1} & =-\pi\left(\text { Res }_{z=i} f(z)+\operatorname{Res}_{z=-i} f(z)\right) \\
& =-\pi\left(\lim _{z \rightarrow i}\left(\frac{\cot \pi z}{z^{2}+1} \cdot(z-i)\right)+\lim _{z \rightarrow-i}\left(\frac{\cot \pi z}{z^{2}+1} \cdot(z+i)\right)\right. \\
& =-\pi\left(\frac{\cot \pi i}{2 i}+\frac{\cot (-x i)}{-2 i}\right) \\
& =-\pi\left(-\frac{\operatorname{coth} \pi}{2 i}-i \frac{\operatorname{coth} \pi}{2 i}\right)=\pi \operatorname{coth} \pi
\end{aligned}
$$

Question 5. Evaluate
(a) $\oint_{|z|=2} \frac{z^{7}}{\left(z^{4}+1\right)^{2}} d z$
(b) $\oint_{|z|=2} \frac{1}{(z+1)^{4}\left(z^{2}-9\right)(z-4)} d z$
(10 points)

Answer 5.
(a)

$$
\begin{aligned}
\S_{|z|=2} \frac{z^{7}}{\left(z^{4}+1\right)^{2}} & =2 \pi i \operatorname{Res}_{z=0} \frac{1}{z^{2}} f\left(\frac{1}{z}\right) \\
& =2 \pi i \operatorname{Res}_{z=0} \frac{1}{z\left(1+z^{4}\right)^{2}} \\
& =2 \pi i \lim _{z \rightarrow 0} \frac{1}{\left(1+z^{4}\right)^{2}}=2 \pi i
\end{aligned}
$$

lie inside the contour.
(b)

Let $f(z)=\frac{1}{(z+1)^{4}\left(z^{2}-9\right)(z-4)}$

$$
\begin{aligned}
I=\oiint_{|z|=2} \frac{1}{(z+1)^{2}\left(z^{2}-9\right)(z-4)} d z & =2 \pi i \operatorname{Res}_{z=-1} f(z) \\
& =-2 \pi i\left(\operatorname{Res}_{z=3} f(z)+\operatorname{Res} f(z)+\operatorname{Res}_{z=-3} f(t)+\operatorname{Res}_{z=\infty} f(z)\right) \\
\operatorname{Res}_{z=3} f(z)=\lim _{z \rightarrow 3} \frac{1}{(z+1)^{4}(z+3)(z-4)} & =\frac{1}{4^{4} 6(-1)}
\end{aligned}
$$

$\operatorname{Res}_{z=-3} f(z)=\lim _{z \rightarrow-3} \frac{1}{(z+1)^{4}(z-3)(z-4)}=\frac{1}{2^{4}(-6)(-7)}$

$$
\operatorname{les}_{z=4} f(z)=\lim _{z \rightarrow 4} \frac{1}{(z+1)^{4}\left(z^{2}-9\right)}=\frac{1}{5^{4} \cdot 7}
$$

and since $\lim _{z \rightarrow \infty} f(z)=0, \operatorname{Res}_{z=\infty} f(z)=-\lim _{z \rightarrow \infty} z f(z)=0$ and $s o$

$$
I=-2 \pi i\left(-\frac{1}{6.4^{4}}+\frac{1}{42 \cdot 2^{4}}+\frac{1}{7.5^{4}}\right)
$$

ÇANKAYA UNIVERSITY
 Department of Mathematics and Computer Science

MATH 352 Complex Analysis II

Make-up for the first midterm
June 9, 2008, 10:00-11:50

Questions

(1) (a) Evaluate $\frac{1}{\pi i} \oint_{C} \frac{\tan z}{(3 z-\pi)^{3}} d z$ where $C=\{z:|z|=1\}$.
(b) Evaluate $\int_{C}\left(12 z^{2}-4 i z\right) d z$ where C is the curve $y=x^{2}$ joining points $(1,1)$ and $(2,4)$,
(12.5 points)
(12.5 points)
(2) Evaluate
(a) $\oint_{C} \frac{z^{2}+z+1}{z^{2}(z-1)(z-2)}$ where C is the the circle with radius $\frac{3}{2}$ centered at the origin.
(b) $\oint_{C} \frac{\cos \pi z}{z^{2}-1} d z$ where C is the rectangle with vertices at $i,-i, 2+i, 2-i$.
(12.5 points)
(3) (a) Find all functions $f(z)$ which are analytic in $|z|<1$ and which satisfy the conditions (a) $f(0)=1$, (b) $|f(z)| \geq 1$ for $|z|<1$.
(12.5 points)
(b) Find all functions $f(z)$ which are analytic everywhere, satisfy the conditions $|f(z)| \leq 6|z|$ for all $z, f(0)=0$ and $f(i)=-1$.
(12.5 points)
(4) (a) If $\frac{z}{e^{z}+1}$ were expanded into its Maclaurin series, what would be the region of convergence? Do not perform the expansion
(12.5 points)
(b) Find the Taylor series centered at $\alpha=1$ and state where it converges for $f(z)=\frac{1-z}{z-3}$.

ÇANKAYA UNIVERSITY

Department of Mathematics and Computer Science

MATH 352 Complex Analysis II

Make-up for the second midterm
June 9, 2008, 10:00-11:50

Questions

(1) Expand $f(z)=\frac{1}{z^{2}+4 z+3}$ in a Laurent series valid for
(a) $1<|z|<3$.
(b) $|z|>3$.
(c) $0<|z+1|<2$.
(5 points)
(d) $|z|<1$.
(2) Find and classify all the zeros and singularities of f and calculate the residue of f at each singular point.
(a) $f(z)=(z-3) \sin \frac{1}{z+2}$.
(b) $f(z)=\frac{e^{2 z}}{(z-1)^{3}}$.
(10 points)
(3) Evaluate
(a) $\int_{0}^{2 \pi} \frac{d \theta}{5-3 \sin \theta}$.
(10 points)
(b) $\oint_{C} \frac{d z}{z^{2} \sinh z}$ where $C=\{z:|z|=1\}$.
(10 points)
(4) Evaluate
(a) $\int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+1\right)\left(x^{2}+2 x+1\right)}$.
(10 points)
(b) $\int_{0}^{\infty} \frac{\cos 2 x}{x^{2}+1} d x$.
(10 points)
(5) Use residues to evaluate the principal value of $\int_{0}^{\infty} \frac{d x}{x^{\frac{1}{3}}(1+x)}$.

ÇANKAYA UNIVERSITY

Department of Mathematics and Computer Science

MATH 352 Complex Analysis II

Make-up for the final
June 9, 2008, 10:00-11:50

Questions

(1) Let $f(z)=\frac{z-\sin z}{z^{3}}$.
(a) Find the Laurent series representation of f which is valid in $|z|>0$.
(b) Determine the type of the isolated singularity of f at $z=0$ and find the corresponding residue. (6 points)
(c) Determine the type of the isolated singularity of f at $z=\infty$ and find the corresponding residue. (6 points)
(2) Evaluate.
(a) $\int_{0}^{2 \pi} \frac{d \theta}{5-3 \sin \theta}$.
(10 points)
(b) $\int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+1\right)\left(x^{2}+2 x+1\right)}$.
(10 points)
(3) (a) Determine the value of $\triangle_{C} \arg f(z)$ if C is the circle $|z|=2$, described in the positive sense and $f(z)=$ $\frac{\left(z^{3}+2\right)(z-1)}{z^{5}\left(z^{2}+5\right)}$
(10 points)
(b) Prove that all the zeros of the polynomial $z^{3}+z^{2}+3$ lie in the annulus $1<|z|<2$.
(10 points)
(4) Show that

$$
\sum_{n=-\infty}^{\infty} \frac{1}{n^{2}+4}=\frac{\pi}{2} \operatorname{coth}(2 \pi)
$$

(20 points)
(5) Evaluate
(a) $\oint_{|z|=3} \frac{(z-1)^{3}}{z(z+2)^{3}} d z$
(10 points)
(b) Evaluate $\oint_{|z|=\frac{35}{2}} \frac{z^{19} \sin \frac{1}{z}}{(z-1)(z-2)(z-3) \cdots(z-19)} d z$.
(10 points)

ÇANKAYA UNIVERSITY

Department of Mathematics and Computer Science

MATH 352 Complex Analysis II

Make-up for the first and second midterms
June 9, 2008, 10:00-11:50

Questions

(1) (a) Evaluate $\frac{1}{\pi i} \oint_{C} \frac{\tan z}{(3 z-\pi)^{3}} d z$ where $C=\{z:|z|=1\}$.
(b) Evaluate $\int_{C}\left(12 z^{2}-4 i z\right) d z$ where C is the curve $y=x^{2}$ joining points $(1,1)$ and $(2,4)$,
(10 points)
(10 points)
(2) (a) Find all functions $f(z)$ which are analytic in $|z|<1$ and which satisfy the conditions (a) $f(0)=1$, (b) $|f(z)| \geq 1$ for $|z|<1$.
(10 points)
(b) Find all functions $f(z)$ which are analytic everywhere, satisfy the conditions $|f(z)| \leq 6|z|$ for all $z, f(0)=0$ and $f(i)=-1$.
(3) Evaluate
(a) $\int_{0}^{2 \pi} \frac{d \theta}{5-3 \sin \theta}$.
(10 points)
(b) $\oint_{C} \frac{d z}{z^{2} \sinh z}$ where $C=\{z:|z|=1\}$.
(10 points)
(4) Evaluate
(a) $\int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+1\right)\left(x^{2}+2 x+1\right)}$.
(10 points)
(b) $\int_{0}^{\infty} \frac{\cos 2 x}{x^{2}+1} d x$.
(10 points)
(5) Use residues to evaluate the principal value of $\int_{0}^{\infty} \frac{d x}{x^{\frac{1}{3}}(1+x)}$.

ÇANKAYA UNIVERSITY

Department of Mathematics and Computer Science

MATH 352 Complex Analysis II

Make-up for the first and second midterms
June 13, 2008, 10:00-11:50

Questions

(1) (a) Evaluate $\frac{1}{\pi i} \oint_{C} \frac{\tan z}{(3 z-\pi)^{3}} d z$ where $C=\{z:|z|=1\}$.
(b) Evaluate $\int_{C}\left(12 z^{2}-4 i z\right) d z$ where C is the curve $y=x^{2}$ joining points $(1,1)$ and $(2,4)$,
(10 points)
(10 points)
(2) (a) Find all functions $f(z)$ which are analytic in $|z|<1$ and which satisfy the conditions (a) $f(0)=1$, (b) $|f(z)| \geq 1$ for $|z|<1$.
(b) Find all functions $f(z)$ which are analytic everywhere, satisfy the conditions $|f(z)| \leq 6|z|$ for all $z, f(0)=0$ and $f(i)=-1$.
(3) Evaluate
(a) $\int_{0}^{2 \pi} \frac{d \theta}{5-3 \sin \theta}$.
(10 points)
(b) $\oint_{C} \frac{e^{z}}{z^{3}+z} d z$, where $C=\{z:|z|=2\}$.
(10 points)
(4) Evaluate
(a) $\int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}$.
(10 points)
(b) $\int_{0}^{\infty} \frac{\cos 2 x}{x^{2}+1} d x$.
(10 points)
(5) Use residues to evaluate the principal value of $\int_{0}^{\infty} \frac{d x}{x^{\frac{1}{3}}(1+x)}$.

ÇANKAYA UNIVERSITY

Department of Mathematics and Computer Science

MATH 352 Complex Analysis II
Make-up

June 9, 2008, 10:00-11:50

Questions

(1) (a) Evaluate $\frac{1}{\pi i} \oint_{C} \frac{\tan z}{(3 z-\pi)^{3}} d z$ where $C=\{z:|z|=1\}$.
(b) Evaluate $\int_{C}\left(12 z^{2}-4 i z\right) d z$ where C is the curve $y=x^{2}$ joining points $(1,1)$ and $(2,4)$,
(10 points)
(10 points)
(2) Evaluate.
(a) $\int_{0}^{2 \pi} \frac{d \theta}{5-3 \sin \theta}$.
(10 points)
(b) $\int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+1\right)\left(x^{2}+2 x+1\right)}$.
(10 points)
(3) (a) Find all functions $f(z)$ which are analytic in $|z|<1$ and which satisfy the conditions (a) $f(0)=1$, (b) $|f(z)| \geq 1$ for $|z|<1$.
(b) Prove that all the zeros of the polynomial $z^{3}+z^{2}+3$ lie in the annulus $1<|z|<2$.
(4) Show that

$$
\sum_{n=-\infty}^{\infty} \frac{1}{n^{2}+4}=\frac{\pi}{2} \operatorname{coth}(2 \pi)
$$

(20 points)
(5) Evaluate
(a) $\oint_{|z|=3} \frac{(z-1)^{3}}{z(z+2)^{3}} d z$
(10 points)
(b) $\oint_{C} \frac{d z}{z^{2} \sinh z}$ where $C=\{z:|z|=1\}$.
(10 points)

