

MATH 352 Complex Analysis II

1st Midterm March 13, 2008 12:40-14:30

Surname	:	
Name	:	
ID #	:	
Department	:	
Section	•	
Instructor	•	
	•	
Signature	:	

- The exam consists of 4 questions of equal weight.
- Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- \bullet Show all your work. Correct answers without sufficient explanation might <u>not</u> get full credit.
- $\bullet\,$ Calculators are $\underline{\mathrm{not}}$ allowed.

GOOD LUCK!

Please do $\underline{\text{not}}$ write below this line.

Q1	Q2	Q3	Q4	TOTAL
25	25	25	25	100

Question 1.

- (a) Evaluate $\oint_C \frac{\sin \frac{1}{z+5}}{e^z(z^2+8)} dz$ where $C = \{z : |z-1| = 1\}.$ (12.5 points)
- (b) Evaluate $\int_{C} \cosh z \, dz$ where C is the contour which connects 7 and $i\pi$ as shown in the figure below. (12.5 points)

Answer 1.

(a)
$$\frac{\sin \frac{1}{2+5}}{e^{2}(z^{2}+8)}$$
 is analytic everywhere except at the $e^{3}(z^{2}+8)$
points -5 , $2\sqrt{2}i$, $-2\sqrt{2}i$ and none of them belong to C
and are invide C, then by Cauchy-Goursat theorem,
 $\begin{cases} \frac{\sin \frac{1}{2+5}}{e^{2}(z^{2}+8)} \\ e^{2}(z^{2}+8) \end{cases}$

(b) Since coshè is analytic in a region containing C
(actually, coshè is analytic everywhere) and definite = coshè
by the fundamental theorem of integration, we have

$$S \cosh d d = \frac{i\pi}{5} \cosh d d = \sinh d \frac{i\pi}{7}$$

 $C = \frac{\pi}{7}$
 $= \frac{e^{-e}}{2} - \frac{e^{-e}}{2}$
 $= \frac{e^{-e}}{2} - \frac{e^{-e}}{2}$
 $= \frac{e^{-e}}{2}$

Question 2. Evaluate

(a)
$$\oint_C \frac{dz}{z^2 + 1}$$
 where C is the contour shown below.

(12.5 points)

(b)
$$\oint_C \frac{e^z}{(z^2 - 2z + 1)(z^2 + 9)} dz$$
 where $C = \{z : |z| = 2\}.$ (12.5 points)

Answer 2.

(a) Clearly,
$$I = \bigotimes_{c} \frac{d_{3}}{2^{2}+1} = \bigotimes_{c} \frac{d_{2}}{2^{2}+1} + \bigotimes_{c} \frac{d_{2}}{2^{2}+1} + \bigotimes_{c} \frac{d_{3}}{2^{2}+1} + \bigotimes_{c_{3}} \frac{d_{3}}{2^{2}+1} + \sum_{c_{3}} \frac{d_{3}}{2^{2}+1} + \sum_{$$

Thus, $I = 2\pi i f(1) = 2\pi i \cdot \frac{e^2(z^2+9) - 2ze^2}{(z^2+9)^2} \Big|_{z=1}^{2} = 2\pi i \cdot \frac{8e}{100} = \frac{4\pi e i}{25}$

Question 3.

- (a) Prove the minimum modulus theorem: Let f(z) be analytic inside and on a simple closed curve C. Prove that if $f(z) \neq 0$ inside C, then |f(z)| must assume its minimum value on C. (12.5 points)
- (b) Give an example to show that if f(z) is analytic inside and on a simple closed curve C and f(z) = 0 at some point inside C, then |f(z)| need not assume its minimum value on C. (12.5 points)

Answer 3.

If f(z)=0 for some z, EC, then there is nothing (a) If $f(z) \neq 0$ $\forall z \in C$, set $g(z) = \frac{1}{f(z)}$. Then to prove. analytic inside and on C. And by maximum Ś 9 theorem, Igitil takes its maximum value on modulus lf(+)| takes its minimum value on C . С and hence f(3)=2 and C= {260: 121=13, clearly, (6) Let f is analytic inside and on C flo)=0, Now, and

1f(z)] assumes its minimum value at 0 which is inside C not on C.

Question 4.

(a) Find the Taylor series centered at 2 for

$$f(z) = \frac{2-z}{z-4}$$

and state where it converges to f(z). (12.5 points)
(b) What is the largest circle within which the Maclaurin series for the function tan z converges to tan z? Write the first two nonzero terms of that series. (12.5 points)

Answer 4.
(a) Remember that
$$\sum_{n=0}^{\infty} \omega^{n} = \frac{1}{1-\omega}, \quad |\omega| < 1.$$
(*)
$$\sum_{n=0}^{\infty} \int_{1-\frac{1}{2}-\frac{1}{2}} \frac{2-\frac{1}{2}}{2-\frac{1}{2}-\frac{1}{2}} = \frac{2-2}{2-\frac{1}{2}-\frac{1}{2}-\frac{1}{2-\frac{1}{2}-\frac{1}{2}}}{1-\frac{2-2}{2}-\frac{1}{2}}$$
Set $\omega = \frac{3-2}{2}$ in (*). Then, $f(2) = \frac{3-2}{2} \sum_{n=0}^{\infty} \left(\frac{2-2}{2}\right)^{n}$ if $\left|\frac{2-2}{2}\right| < 1.$
Therefore $f(2) = \sum_{n=0}^{\infty} \frac{1}{2^{n+1}} (3-2)^{n+1}$ for $13-21 < 2.$
(b) $\tan 2 = \frac{\sin 2}{\cos 2}$ is analytic everywhere except at the cost cost is analytic everywhere except at the points $2 = (n+\frac{1}{2})\pi$, $n \in \mathbb{Z}$. Thus, the nearest singular points to the center (=origin) are $\pm \frac{\pi}{2}$. Therefore, the Madauxin serves for $\tan 2$ and $\frac{\pi}{2}$ in $(2 < \frac{\pi}{2})^{n}$ and $\frac{\pi}{2} + \frac{\pi}{2}$. Therefore, $f(2) < \frac{\pi}{2}$, $\frac{\pi}{2}$ and $\frac{\pi}{2} + \frac{\pi}{2} = \frac{\pi}{2}$ is $2 + \frac{\pi}{2}$. Therefore, $\frac{\pi}{2}$ is $2 + \frac{\pi}{2}$. Therefore, $\frac{\pi}{2}$ is $1 + \frac{\pi}{2} = \frac{\pi}{2}$. Therefore, $\frac{\pi}{2}$ is $1 + \frac{\pi}{2} = \frac{\pi}{2}$. Therefore, $\frac{\pi}{2}$ is $1 + \frac{\pi}{2} = \frac{\pi}{2}$. Therefore, $\frac{\pi}{2} = \frac{\pi}{2} = \frac{\pi}{2}$ is $\frac{\pi}{2} = \frac{\pi}{2} = \frac{\pi}{2} = \frac{\pi}{2}$.

 $a_3 = 4 \sec^2 \sec^2 \tan^2 \tan^2 + 2 \sec^2 \pm \sec^2 \pm \left|_{\frac{2}{2}=0} = 2 \pm 0$ So the first two nonzero terms are $2 \pm 2\frac{2^3}{3!} = 2 \pm \frac{2^3}{3!}$

MATH 352 Complex Analysis II

 2^{nd} Midterm April 24, 2008 12:40-14:30

Surname	:	
Name	:	
ID $\#$:	
Department	:	
Section	:	
Instructor	•	
Signature	•	
Signature	•	

- The exam consists of 5 questions of equal weight.
- Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- \bullet Show all your work. Correct answers without sufficient explanation might <u>not</u> get full credit.
- $\bullet\,$ Calculators are $\underline{\mathrm{not}}$ allowed.

GOOD LUCK!

Please do \underline{not} write below this line.

Q1	Q2	Q3	Q4	Q5	TOTAL
20	20	20	20	20	100

Question 1. Expand $f(z) = \frac{1}{z^2 - 5z + 6}$ in a Laurent series valid for

- $\begin{array}{ll} (a) \ |z| < 2. \\ (b) \ 2 < |z| < 3. \\ (c) \ |z| > 3. \\ (d) \ 0 < |z-2| < 1. \end{array}$ (5 points)(5 points) (5 points) (5 points)

Answer	ecall that 2	$\omega^{n} = \frac{1}{1-\omega}$, $ \omega < $	(*)
And	note that f	$(z) = -\frac{1}{2-2} + \frac{1}{2-3}$	
(m)	$f(z) = \frac{1}{2-z} - \frac{1}{3-z} =$	$\frac{1}{2} \cdot \frac{1}{\frac{1}{2}} - \frac{1}{3} \cdot \frac{1}{\frac{1}{3}}$	
	=	$\frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{3}{2}\right)^n - \frac{1}{3} \sum_{n=0}^{\infty} \left(\frac{3}{3}\right)^n$	n
(4)	$f(z) = -\frac{1}{2-2} - \frac{1}{3-2} = -\frac{1}{3-2}$	$\frac{1}{2} \cdot \frac{1}{1-\frac{2}{2}} - \frac{1}{3} \cdot \frac{1}{1-\frac{2}{3}}$	
	2	$-\frac{1}{2}\sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^{n} - \frac{1}{3}\sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^{n}$	<u>,</u>
(د)	$f(z) = -\frac{1}{3-2} + \frac{1}{2-3} = -\frac{1}{3-2}$	$\frac{1}{2} \cdot \frac{1}{1-\frac{2}{2}} + \frac{1}{2} \cdot \frac{1}{1-\frac{3}{2}}$	
		$\frac{1}{2}\sum_{n=0}^{\infty}\left(\frac{2}{2}\right)^{n}+\frac{1}{2}\sum_{n=0}^{\infty}\left(\frac{3}{2}\right)^{n}$	η.
(9)	$f(z) = -\frac{1}{z-2} + \frac{1}{(z-2)}$	$= -\frac{1}{2-2} - \frac{1}{1-(2-2)}$	
		$= -\frac{1}{2-2} - \sum_{n=0}^{\infty} (2-2)^n$	•

Question 2. Find and classify all the zeros and singularities of f and calculate the residue of f at each singular point.

(a)
$$f(z) = \sin \frac{1}{z}$$
. (10 points)
(b) $f(z) = \frac{\tan z}{z}$. (10 points)

Answer 2.

(a) $\sin \frac{1}{2} = 0 \Rightarrow \frac{1}{2} = n\pi$ for some $n \in \mathbb{Z}$ or equivalently, $z = \frac{1}{2}$, $n \in \mathbb{Z} \setminus \{0\}$. Since $\frac{1}{2} = \frac{1}{2^2} \cos \frac{1}{2}$ and $\frac{1}{2} = \frac{1}{2^2} \cos \frac{1}{2}$ and $-(n\pi)^2 \cos(n\pi) \neq 0$ for $n \in \mathbb{Z} \setminus \{0\}$ all zeros are simple. $nin \frac{1}{2} = \frac{1}{2} - \frac{1}{312^3} + \frac{1}{512^5} - \dots , 0(121600), nin \frac{1}{2}$ has Sime an essential singularity at Z=0 with kes sin 1 = 1 and has no other singularity in C. f4)= mint . clearly, sint has simple zeros at 2=nt, (6) 7 2057 I has a simple zero at == 0 and cos + has simple zeros at $f = (n + \frac{1}{2}) \times for n \in \mathbb{Z}$. Then f has a removable singularity at ==0, simple zeros at ==nx, n < Z150} and simple poles at $Z = (n + \frac{1}{2})\pi$, $n \in \mathbb{Z}$. And, les $\frac{\sin 2}{3=(n+\frac{1}{2})\pi} = \lim_{z \to (n+\frac{1}{2})\pi} \frac{(3-(n+\frac{1}{2})\pi)\sin 2}{2\cos 2}$ $\frac{(3-(n+\frac{1}{2})\pi)\sin 2}{2\cos 2}$ = $\lim_{Z \to (n+\frac{1}{2})^{\mathcal{R}}} \frac{\operatorname{nin} Z}{Z}$. $\lim_{Z \to (n+\frac{1}{2})^{\mathcal{R}}} \frac{(Z - (n+\frac{1}{2})^{\mathcal{R}})}{\operatorname{eos} Z}$ $\frac{L.R.}{(n+\perp)} \frac{(-1)^n}{\pi} \lim_{\frac{1}{2} \to (n+\perp)} \frac{1}{\pi} - \frac{(-1)^n}{8\pi} \frac{(-1)^n}{\pi} \frac{(-1)^n}{(-1)^n}$ $= \frac{-1}{(n+1)\pi}$

Question 3. Evaluate

(a)
$$\int_{0}^{2\pi} \frac{d\theta}{3 + \sin \theta}.$$
 (10 points)
(b)
$$\oint_{C} \frac{dz}{z^{2} \sinh z} \text{ where } C = \{z : |z| = 1\}.$$
 (10 points)

Answer 3.
(a) Let
$$z = e^{i\theta}$$
, then $d\theta = \frac{dz}{iz}$ and $\bar{m}\theta = \frac{z^2}{2iz}$. Therefore,
 $I = \int_{0}^{2\pi} \frac{d\theta}{3 + \bar{m}\theta} = \int_{|z|=1}^{2\pi} \frac{1}{3 + \frac{z^2}{2iz}} \frac{dz}{iz} = 2 \int_{|z|=1}^{2\pi} \frac{dz}{z^2 + 6iz - 1}$
 $z^2 + 6iz - 1 = 0 \Rightarrow z = -\frac{6i + (-36 + 4)}{2} = -\frac{6i \pm 4\sqrt{2}i}{2} = (-3 \pm 2\sqrt{2})i$
Only $(-3 + 2\sqrt{2})i$ is invide the unit circle , and w
 $I = 2.2\pi i$ Res $\frac{1}{z^2 + 6iz - 1} = 4\pi i \lim_{z \to (-3 + 2\sqrt{2})i} \frac{2 - (-3 \pm 2\sqrt{2})i}{z^2 + 6iz - 1}$
 $\frac{1}{z^2 + 6iz - 1} = \frac{4\pi i}{z^2 + 6iz - 1} = \frac{4\pi i}{z^2 + 6iz - 1}$
(b) z^2 has a double zero at $z = 0$ and $\bar{m}hz$ has

has a triple zero at
$$z=0$$
 and no other inquarities,
and so, $I = \begin{cases} \frac{d}{d} \\ C \end{cases} = 2\pi i \qquad Res \qquad \frac{1}{2^2 \sinh t}$.

$$\frac{1}{z^{2}\sinh 2} = \frac{1}{z^{2}(z+\frac{z^{3}}{z!}+\frac{z^{5}}{6!}+\cdots)} = \frac{1}{z^{2}} = \frac{1}{1+\frac{z^{2}}{2!}+\frac{z^{1}}{5!}+\cdots} = \frac{1}{z^{3}} (1+q_{1}z+q_{2}z^{2}+\cdots)$$

$$= \frac{1}{z^{2}(z+\frac{z^{3}}{2!}+\frac{z^{5}}{6!}+\cdots)} = \frac{1}{z^{2}(z+\frac{z^{3}}{2!}+\frac{z^{1}}{5!}+\cdots)} = \frac{1}{z^{3}(z+\frac{z^{3}}{2!}+\frac{z^{4}}{5!}+\cdots)}$$

$$= \frac{1}{z^{2}\sin h^{2}} = \frac{1}{z^{2}\sinh h^{2}} = \frac{1}{z^{2}} = \frac{1}{z^{2}} = \frac{1}{z^{2}(z+\frac{z^{3}}{2!}+\frac{z^{4}}{5!}+\cdots)} = \frac{1}{z^{2}(z+\frac{z^{3}}{2!}+\frac{z^{4}}{5!}+\cdots)} = \frac{1}{z^{2}(z+\frac{z^{4}}{2!}+\frac{z^{4}}{5!}+\cdots)} = \frac{1}{z^{2}(z+\frac{z^{4}}{2!}+\frac{z^{4}}{5!}+\frac{z^{4}}{5!}+\cdots)} = \frac{1}{z^{2}(z+\frac{z^{4}}{2!}+\frac{z^{4}}{5!}+\frac{z^{4}}{5!}+\cdots)} = \frac{1}{z^{2}(z+\frac{z^{4}}{2!}+\frac{z^{4}}{5!}+\frac$$

$$q_{1=0}$$
 and $\frac{1}{3!} + q_{2} = 0 \implies q_{2=-\frac{1}{6}}$ and $I = 2\pi i \left(-\frac{1}{6}\right) = -\frac{\pi i}{3}$.

Question 4. Evaluate

(a)
$$\int_{-\infty}^{\infty} \frac{dx}{29x^2 + 4x + 1}.$$
 (10 points)
(b)
$$\int_{-\infty}^{\infty} \frac{x \sin x}{1 + x^2} dx.$$
 (10 points)

Answer 4.

(c)
$$29\overline{2}^{2}+4\overline{2}+1=0 \Rightarrow 2= -4+(16-4.29)^{\frac{1}{2}} = -\frac{2}{29} \pm \frac{5}{29}$$

 $-\frac{2}{9} + \frac{5}{20}$; belongs to the upper half plane and deg $(292^{2}+42+1) \ge deg(1)+2$. So

$$\frac{5}{29x^{2}+4x+1} = 2\pi i \text{ Res} \qquad \frac{1}{29 + \frac{6}{29} i 292^{2}+42+1} = 2\pi i \lim_{z \to -\frac{2}{29} + \frac{5}{29} i 292^{2}+42+1} = 2\pi i \lim_{z \to -\frac{2}{29} + \frac{5}{29} i 292^{2}+42+1} = 2\pi i \lim_{z \to -\frac{2}{29} + \frac{5}{29} i 292^{2}+42+1} = 2\pi i \lim_{z \to -\frac{2}{29} + \frac{5}{29} i 292^{2}+42+1} = 2\pi i \lim_{z \to -\frac{2}{29} + \frac{5}{29} i 292^{2}+42+1} = 2\pi i \lim_{z \to -\frac{2}{29} + \frac{5}{29} i 292^{2}+42+1} = 2\pi i \lim_{z \to -\frac{2}{29} + \frac{5}{29} i 292^{2}+42+1} = 2\pi i \lim_{z \to -\frac{2}{29} + \frac{5}{29} i 292^{2}+42+1} = 2\pi i \lim_{z \to -\frac{2}{29} + \frac{5}{29} i 292^{2}+42+1} = 2\pi i \lim_{z \to -\frac{2}{29} + \frac{5}{29} i 292^{2}+42+1} = 2\pi i \lim_{z \to -\frac{2}{29} + \frac{5}{29} i 292^{2}+42+1} = 2\pi i \lim_{z \to -\frac{2}{29} + \frac{5}{29} i 292^{2}+42+1} = 2\pi i \lim_{z \to -\frac{2}{29} + \frac{5}{29} i 292^{2}+42+1} = 2\pi i \lim_{z \to -\frac{2}{29} + \frac{5}{29} i 292^{2}+42+1} = 2\pi i \lim_{z \to -\frac{2}{29} + \frac{5}{29} i 292^{2}+42+1} = 2\pi i \lim_{z \to -\frac{2}{29} + \frac{5}{29} i 292^{2}+42+1} = 2\pi i \lim_{z \to -\frac{2}{29} + \frac{5}{29} i 292^{2}+42} = 2\pi i \lim_{z \to -\frac{2}{29} + \frac{5}$$

$$\int_{-\infty}^{\infty} \frac{z\sin x}{1+z^2} dz = 2\pi \operatorname{Re}\left(\operatorname{Res}_{z=i}^{i} \frac{\overline{ze}}{1+z^2}\right)$$
$$= 2\pi \operatorname{Re}\left(\operatorname{Res}_{z=i}^{i} \frac{\overline{ze}}{1+z^2}\right)$$
$$= 2\pi \operatorname{Re}\left(\operatorname{Re}\left(\operatorname{Res}_{z=i}^{i} \frac{\overline{ze}}{1+z^2}\right)\right)$$

Question 5. Use residues to evaluate the principal value of $\int_0^\infty \frac{dx}{x^{\frac{1}{2}}(1+x)}$. (20 points)

Answer 5.

Let
$$f(z) = \frac{1}{2} = \frac{1}{2} - \frac{1}{2} (\ln |z| + i \arg z)$$

 $|+z| = \frac{1}{2} = \frac{1}{2} - \frac{1}{2} (\ln |z| + i \arg z)$
 $|+z| = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} (\ln |z| + i \arg z)$
 $|+z| = \frac{1}{2} - \frac{1}{2} (\ln |z| + i \arg z)$
 $|+z| = \frac{1}{2} - \frac{1}{2} (\ln |z| + i \arg z)$
 $|+z| = \frac{1}{2} - \frac{1}{2} (\ln |z| + i \arg z)$
 $|+z| = \frac{1}{2} - \frac{1}{2} (\ln |z| + i \arg z)$

LRIE ĩ and the shown below (det contour EXIXR) ir C. $\int_{L_0} f(t) dt = 2\pi i \operatorname{Res} f(t)$ Then LRE R $k_{2} f(z) = \lim_{n \to \infty} \frac{1}{2} \int_{-1}^{\infty} \frac{1}{2}$ -⁷/₂ 7 - 0 and $e^{-\frac{1}{2}(\ln|z|+i\alpha rgz)}$ -iR = lim 2-7-1 $-\frac{1}{2}(\ln 1 + i\pi) = \frac{1}{2} \frac{1}{2}$

is
$$\int_{R_1E} f(t)dt = 2\pi$$
. On the other hand,
 $\int_{R_1E} f(t)dt = 2\pi$. On the other hand,
 $\int_{R_1E} f(t)dt = \int_{L_1} f(t)dt + \int_{L_2} f(t)dt + \int_{L_2} f(t)dt$, and
 $\int_{R_1E} f(t)dt = \int_{L_1} \frac{1}{2}(\ln x + i0)$
 $\int_{L_1} f(t)dt = \int_{E} \frac{e^{-\frac{1}{2}}(\ln x + i0)}{1+x} dx = \int_{E} \frac{dx}{x^{1/2}(1+x)} \rightarrow \int_{0}^{\infty} \frac{dx}{x^{1/2}(1+x)}$ as $R \rightarrow \infty, E \rightarrow 0$,
 $\int_{L_2} f(t)dt = \int_{R} \frac{e^{-\frac{1}{2}}(\ln x + i2\pi)}{1+x} dx = \int_{E} \frac{e^{-i\pi}}{x^{1/2}(1+x)} dx = \int_{E} \frac{dx}{x^{1/2}(1+x)} \rightarrow \int_{0}^{\infty} \frac{dx}{x^{1/2}(1+x)} dx$
 $\int_{L_2} f(t)dt = \int_{R} \frac{e^{-\frac{1}{2}}(\ln x + i2\pi)}{1+x} dx = \int_{E} \frac{e^{-i\pi}}{x^{1/2}(1+x)} dx = \int_{0}^{R} \frac{dx}{x^{1/2}(1+x)} \rightarrow \int_{0}^{\infty} \frac{dx}{x^{1/2}(1+x)} dx$

$$C_{R}$$
 $R^{1/2}(R-1)$

 $\begin{vmatrix} S f(x) dx \end{vmatrix} \leq 2\pi \varepsilon. \frac{1}{\varepsilon^{\gamma_2}(1-\varepsilon)} \rightarrow 0 \quad \text{as } \varepsilon \neq 0 \\ \varepsilon^{\gamma_2}(1-\varepsilon) \\ Therefore \qquad 2 \int_{0}^{\infty} \frac{dx}{x^{\gamma_2}(1+x)} = 2\pi \quad \text{and} \quad \text{so} \\ \frac{\pi}{\varepsilon^{\gamma_2}(1+x)} = \frac{1}{\varepsilon^{\gamma_2}(1+x)} = 1 \\ \varepsilon^{\gamma_2}(1+x) = 1 \\ \varepsilon^{\gamma_2}(1+$

$$\frac{\int dx}{x^{N_2}(1+x)} = \pi$$

MATH 352 Complex Analysis II

Final May 28, 2008 11:00-12:50

Surname	:	
Name	:	
ID #	:	
Department	•	
Section	•	
Instructor	•	
	•	
Signature	:	

- The exam consists of 5 questions of equal weight.
- Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- \bullet Show all your work. Correct answers without sufficient explanation might <u>not</u> get full credit.
- $\bullet\,$ Calculators are $\underline{\mathrm{not}}$ allowed.

GOOD LUCK!

Please do $\underline{\text{not}}$ write below this line.

Q1	Q2	Q3	Q4	Q5	TOTAL
20	20	20	20	20	100

Question 1. Let $f(z) = \frac{\cos z}{z^2}$.

- (a) Find the Laurent series representation of f which is valid in |z| > 0. (8 points)
- (b) Determine the type of the isolated singularity of f at z = 0 and find the corresponding residue. (6 points)
- (c) Determine the type of the isolated singularity of f at $z = \infty$ and find the corresponding residue. (6 points)

Answer 1.

(a)
$$\cos z = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!} = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^4}{4!} + \dots + \forall z \in \mathbb{C}$$

So $f(z) = \frac{\cos z}{z^2} = \frac{1}{z^2} \left(1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^4}{4!} + \dots + \forall z \in \mathbb{C} \setminus \{0\}$
 $= \frac{1}{z^2} - \frac{1}{2!} + \frac{z^2}{4!} - \frac{z^4}{4!} + \dots + \forall z \in \mathbb{C} \setminus \{0\}$
(b) f has a double pole at $z=0$ and $\operatorname{Res}_{z=0}^{-1} f(z) = 0$.
(c) f has an essential singularity at $z=\infty$ and
 $\operatorname{Res}_{z=0}^{-1} f(z) = 0$.

2=00

Question 2. Evaluate.

(a)
$$\int_{0}^{2\pi} \frac{d\theta}{5 - 4\cos\theta}$$
 (10 points)
(b)
$$\int_{0}^{\infty} \frac{dx}{x^4 + 1}$$
 (10 points)

Answer 2.

Let $z = e^{i\Theta}$, $0 \le 0 \le 2\pi$ and then $\cos \Theta = \frac{z^2 + i}{2z}$ and $d\Theta = \frac{dz}{iz}$. (a)

$$S_{0_{j}} = \frac{2\pi}{5 \cdot 4000} = \frac{9}{121_{21}} = \frac{1}{5 \cdot 4(\frac{2^{2}+1}{2})} = \frac{1}{12}$$

$$= -\frac{2}{1} = \frac{9}{121_{21}} = \frac{1}{42^{2}-102+4} = \frac{1}{121_{21}} = \frac{1}{22^{2}-52+2}$$

$$= \frac{1}{121_{21}} = \frac{1}{(2-2)(22-1)} = \frac{1}{2} \cdot 2\pi i \cdot \frac{1}{2} = \frac{1}{(2-2)(22-1)}$$

$$= -2\pi \lim_{z \to \frac{1}{2}} \frac{(2-\frac{1}{2})}{(2-2)(22-1)} = -2\pi \cdot \frac{1}{2(-\frac{3}{2})} = \frac{2\pi}{3}$$

(b) Let
$$P(z)=1$$
, $Q(z)=z^{4}+1$ and $deg(Q) > deg(z)+2$. If $z^{4}+1=0$
 $i = \frac{z^{2}+2kz}{1+2kz}$, $k=0,1,2,3$, or equivalently $z=\pm \frac{1}{\sqrt{2}}\pm \frac{1}{\sqrt{2}}$.

Then by a theorem, we have seen in class,

$$\frac{5^{\circ}}{5} \frac{dx}{x^{4}+1} = 2 \int_{0}^{\infty} \frac{dx}{x^{4}+1} = 2\pi i \left(\begin{array}{ccc} \text{Res} & 1 \\ \frac{1}{2^{2}} + \frac{1}{\sqrt{2}} & \frac{1}{2^{2}+1} \\ \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{array} \right)$$

Clearly, Res
$$\frac{1}{2^{u}+1} = \lim_{z \to \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}} \frac{(z - (\sqrt{2} + \sqrt{2}))}{z^{u}+1} = \lim_{z \to \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}} \frac{1}{2^{u}+1} = \frac{1}{2^{u}+1} = \frac{1}{2^{u}+1} = \frac{1}{2^{u}+1} = \frac{1}{4^{u}+1} = \frac{1}{4^{u}+1}$$

sim

$$\frac{\chi_{es}}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = -\frac{1}{\sqrt{4}} \left(-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right) \text{ and hence}$$

$$\int_{0}^{\infty} \frac{dx}{x^{1}+1} = \pi \left(-\frac{1}{\sqrt{2}} \right) \left[\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right] = \frac{\pi}{2\sqrt{2}}$$

•

Question 3.

- (a) Determine the value of $\triangle_C \arg f(z)$ if C is the circle |z| = 2, described in the positive sense and $f(z) = \frac{(z^3 + 2)(z - 1)}{z^5(z^2 + 5)}$. (10 points)
- (b) Prove that all the zeros of the polynomial $z^3 + z^2 + 3$ lie in the annulus 1 < |z| < 2. (10 points)

(b) Let
$$C_1: |z|=1$$
 and $C_2: |z|=2$.
On and inside C_1 , let $f(z)=3$ and $g(z)=z^3+z^2$.
If $z \in C_1$, then $|z|=1$ and $|f(z)|=3$, $|g(z)| \leq |z|^3+|z|^2_{-2}z^2_{-2}$.
Sime $|g(z)| < |f(z)|$ on C_1 , $z_{f+g}=z_f$ inside band on)
 C_1 . Sime f has no zeros inside C_1 , $f+g$ has no
peros inside (and on) C_1 .
On and inside C_2 , let $f(z)=z^3$ and $g(z)=z^2+3$.
If $z \in C_{2,1}$ then $|z|=2$ and $|g(z)| \leq |z|^2+3=7$ and $|f(z)|=8$.
Sime $|g(z)| < |f(z)|$ on C_2 , $z_{f+g}=z_f$ inside and on C_2 .
Sime f has 3 zeros inside C_2 , $f+g$ has
three zeros inside C_1 all three zeros must lie
between C_1 and C_2 . Sime z^3+z^2+3 has exactly
three zeros in C_1 , all zeros lie in the
annulus, $|\zeta|z||\leq 2$.

Question 4. Show that

$$\sum_{n=-\infty}^{\infty} \frac{1}{n^2 + 1} = \pi \coth \pi$$

(20 points)

Answer 4. Let $f(x) = \frac{\cot x^2}{2^2 + 1} = \frac{\cos x^2}{(2^2 + 1)} \sin x^2$ and $-(n+1) = \frac{1}{n+1} = \frac{1}{n} = \frac{1}{n+1} = \frac{1}{n} = \frac$ Ln: On the other hand, $\left| \begin{cases} s f_{12} \\ s f_{12} \end{cases} \right| \leq \frac{4(2n+1)}{(n+\frac{1}{2})^2} = \max \left| \cot \pi_2 \right| \leq \frac{4(2n+1)}{(n+\frac{1}{2})^2} = 1$ for some C70 that does not depend on n. So § flt)dt -> 0 as n+00. Therefore, $\sum_{k=1}^{\infty} \operatorname{Res} f(z) = -(\operatorname{Res} f(z) + \operatorname{Res} f(z)).$ Note that, Res $f(z) = \lim_{k \to \infty} (z-k) \cos \pi z = \lim_{k \to \infty} \frac{z-k}{2-k} \lim_{k \to \infty} \frac{\cos \pi z}{2-k}$ $= \frac{\cos \pi k}{k^{2} + 1} \cdot \frac{1}{\pi \cos \pi k} = \frac{1}{\pi (k^{2} + 1)}$ and not $\sum_{k=1}^{10} \frac{1}{k^2+1} = -\pi \left(\underset{t=1}{\text{kes}} f(t) + \underset{t=1}{\text{kes}} f(t) \right)$ $= -\pi \left(\lim_{2 \to i} \left(\frac{\cot \pi z}{2 z_{\pm i}}, (z_{\pm i}) \right) + \lim_{2 \to i} \left(\frac{\cot \pi z}{2 z_{\pm i}}, (z_{\pm i}) \right) \right)$ $= -\pi \left(\frac{\cot \pi i}{2\pi i} + \frac{\cot(-\pi i)}{2\pi i} \right)$ $= -\pi \left(i \frac{\coth \pi}{2i} - i \frac{\coth \pi}{2i} \right) = \pi \coth \pi.$

Question 5. Evaluate

(a)
$$\oint_{|z|=2} \frac{z^7}{(z^4+1)^2} dz$$
 (10 points)
(b) $\oint_{|z|=2} \frac{1}{(z+1)^4(z^2-9)(z-4)} dz$ (10 points)

Answer 5.

(a)
$$\begin{cases} \frac{2^{2}}{(2^{4}+1)^{2}} = 2\pi i \quad \text{Res} \quad \frac{1}{2^{2}} \quad f\left(\frac{1}{2}\right) \\ = 2\pi i \quad \text{Res} \quad \frac{1}{2^{2}} \quad f\left(\frac{1}{2}\right) \\ = 2\pi i \quad \text{Res} \quad \frac{1}{2(1+2^{4})^{2}} \\ = 2\pi i \quad \text{Res} \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \text{Res} \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \text{Res} \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \text{Res} \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \text{Res} \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \text{Res} \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \text{Res} \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \text{Res} \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \text{Res} \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \text{Res} \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \text{Res} \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \text{Res} \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \text{Res} \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \text{Res} \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \text{Res} \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \text{Res} \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \text{Res} \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \text{Res} \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \text{Res} \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \text{Res} \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \text{Res} \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \text{Res} \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \text{Res} \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \text{Res} \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \text{Res} \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \text{Res} \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \text{Res} \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \text{Res} \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \frac{1}{2(1+2^{4})^{2}} = 2\pi i \\ = 2\pi i \quad \frac{1}{2(1+2^{4})^{2$$

$$\lim_{z = -3} f(z) = \lim_{z \to -3} \frac{1}{(z + 1)^{4}(z - 3)(z - 4)} = \frac{1}{2^{4}(-6)(-7)}$$

$$\lim_{z = 4} f(z) = \lim_{z \to 4} \frac{1}{(z+1)^{4}(z-9)} = \frac{1}{5^{4}.7}$$

and since $\lim_{z\to\infty} f(z)=0$, les $f(z)=-\lim_{z\to\infty} zf(z)=0$ and so $z\to\infty$

$$J = -2\pi i \left(-\frac{1}{6.4^{4}} + \frac{1}{42.2^{4}} + \frac{1}{7.5^{4}} \right)$$

Department of Mathematics and Computer Science

MATH 352 Complex Analysis II

Make-up for the first midterm June 9, 2008, 10:00-11:50

QUESTIONS

(1) (a) Evaluate
$$\frac{1}{\pi i} \oint_C \frac{\tan z}{(3z - \pi)^3} dz$$
 where $C = \{z : |z| = 1\}.$ (12.5 points)

- (b) Evaluate $\int_{C} (12z^2 4iz) dz$ where C is the curve $y = x^2$ joining points (1, 1) and (2, 4), (12.5 points)
- (2) Evaluate

(a)
$$\oint_C \frac{z^2 + z + 1}{z^2(z-1)(z-2)}$$
 where *C* is the the circle with radius $\frac{3}{2}$ centered at the origin. (12.5 points)

- (b) $\oint_C \frac{\cos \pi z}{z^2 1} dz$ where *C* is the rectangle with vertices at i, -i, 2 + i, 2 i. (12.5 points)
- (3) (a) Find all functions f(z) which are analytic in |z| < 1 and which satisfy the conditions (a) f(0) = 1, (b) $|f(z)| \ge 1$ for |z| < 1. (12.5 points)
 - (b) Find all functions f(z) which are analytic everywhere, satisfy the conditions $|f(z)| \le 6|z|$ for all z, f(0) = 0and f(i) = -1. (12.5 points)
- (4) (a) If $\frac{z}{e^z + 1}$ were expanded into its Maclaurin series, what would be the region of convergence? Do not perform the expansion (12.5 points)
 - (b) Find the Taylor series centered at $\alpha = 1$ and state where it converges for $f(z) = \frac{1-z}{z-3}$. (12.5 points)

Department of Mathematics and Computer Science

MATH 352 Complex Analysis II

Make-up for the second midterm June 9, 2008, 10:00-11:50

QUESTIONS

(1)	Expand $f(z) = \frac{1}{z^2 + 4z + 3}$ in a Laurent series valid for	
(2)	 (a) 1 < z < 3. (b) z > 3. (c) 0 < z + 1 < 2. (d) z < 1. (e) Find and classify all the zeros and singularities of f and calculate the residue of f at each singular p 	(5 points) (5 points) (5 points) (5 points) point.
	(a) $f(z) = (z-3)\sin\frac{1}{z+2}$.	(10 points)
(3)	(b) $f(z) = \frac{e^{2z}}{(z-1)^3}$. Evaluate	(10 points)
	(a) $\int_0^{2\pi} \frac{d\theta}{5 - 3\sin\theta}$.	(10 points)
	(b) $\oint_C \frac{dz}{z^2 \sinh z}$ where $C = \{z : z = 1\}.$	(10 points)
(4)	Evaluate (a) $\int_{-\infty}^{\infty} \frac{dx}{(x^2+1)(x^2+2x+1)}$.	(10 points)
	(b) $\int_0^\infty \frac{\cos 2x}{x^2 + 1} dx.$	(10 points)
(5)	Use residues to evaluate the principal value of $\int_0^\infty \frac{dx}{x^{\frac{1}{3}}(1+x)}$.	(20 points)

Department of Mathematics and Computer Science

MATH 352 Complex Analysis II

Make-up for the final June 9, 2008, 10:00-11:50

QUESTIONS

- (1) Let $f(z) = \frac{z \sin z}{z^3}$.
 - (a) Find the Laurent series representation of f which is valid in |z| > 0. (8 points)
 - (b) Determine the type of the isolated singularity of f at z = 0 and find the corresponding residue. (6 points)
 - (c) Determine the type of the isolated singularity of f at $z = \infty$ and find the corresponding residue. (6 points)

(2) Evaluate.

(a)
$$\int_0^{2\pi} \frac{d\theta}{5 - 3\sin\theta}.$$
 (10 points)

(b)
$$\int_{-\infty}^{\infty} \frac{dx}{(x^2+1)(x^2+2x+1)}$$
. (10 points)

- (3) (a) Determine the value of $\triangle_C \arg f(z)$ if C is the circle |z| = 2, described in the positive sense and $f(z) = \frac{(z^3+2)(z-1)}{z^5(z^2+5)}$. (10 points)
 - (b) Prove that all the zeros of the polynomial $z^3 + z^2 + 3$ lie in the annulus 1 < |z| < 2.

(10 points)

(4) Show that

$$\sum_{n=-\infty}^{\infty} \frac{1}{n^2 + 4} = \frac{\pi}{2} \coth(2\pi)$$
(20 points)

(a)
$$\oint_{|z|=3} \frac{(z-1)^3}{z(z+2)^3} dz$$
 (10 points)

(b) Evaluate
$$\oint_{|z|=\frac{35}{2}} \frac{z^{19} \sin \frac{1}{z}}{(z-1)(z-2)(z-3)\cdots(z-19)} dz.$$
 (10 points)

Department of Mathematics and Computer Science

MATH 352 Complex Analysis II

Make-up for the first and second midterms June 9, 2008, 10:00-11:50

QUESTIONS

(1) (a) Evaluate
$$\frac{1}{\pi i} \oint_C \frac{\tan z}{(3z - \pi)^3} dz$$
 where $C = \{z : |z| = 1\}.$ (10 points)
(b) Evaluate $\int_C (12z^2 - 4iz) dz$ where C is the curve $y = x^2$ joining points (1, 1) and (2, 4), (10 points)
(2) (a) Find all functions $f(z)$ which are analytic in $|z| < 1$ and which satisfy the conditions (a) $f(0) = 1$, (b)

- (2) (a) Find all functions f(z) which are analytic in |z| < 1 and which satisfy the conditions (a) f(0) = 1, (b) $|f(z)| \ge 1$ for |z| < 1. (10 points)
 - (b) Find all functions f(z) which are analytic everywhere, satisfy the conditions $|f(z)| \le 6|z|$ for all z, f(0) = 0and f(i) = -1. (10 points)

(3) Evaluate

(a)
$$\int_0^{2\pi} \frac{d\theta}{5 - 3\sin\theta}$$
. (10 points)

(b)
$$\oint_C \frac{dz}{z^2 \sinh z} \text{ where } C = \{z : |z| = 1\}.$$
 (10 points)

(4) Evaluate
$$\int_{\infty}^{\infty}$$

(a)
$$\int_{-\infty}^{\infty} \frac{dx}{(x^2+1)(x^2+2x+1)}$$
. (10 points)

(b)
$$\int_0^\infty \frac{\cos 2x}{x^2 + 1} \, dx. \tag{10 points}$$

(5) Use residues to evaluate the principal value of $\int_0^\infty \frac{dx}{x^{\frac{1}{3}}(1+x)}$. (20 points)

Department of Mathematics and Computer Science

MATH 352 Complex Analysis II

Make-up for the first and second midterms June 13, 2008, 10:00-11:50

QUESTIONS

(1) (a) Evaluate
$$\frac{1}{\pi i} \oint_C \frac{\tan z}{(3z - \pi)^3} dz$$
 where $C = \{z : |z| = 1\}$. (10 points)
(b) Evaluate $\int_C (12z^2 - 4iz) dz$ where C is the curve $y = x^2$ joining points (1, 1) and (2, 4), (10 points)
(2) (a) Find all functions $f(z)$ which are analytic in $|z| < 1$ and which satisfy the conditions (a) $f(0) = 1$, (b) $|f(z)| \ge 1$ for $|z| < 1$. (10 points)
(b) Find all functions $f(z)$ which are analytic everywhere, satisfy the conditions $|f(z)| \le 6|z|$ for all $z, f(0) = 0$ and $f(i) = -1$. (10 points)
(3) Evaluate

(a)
$$\int_0^{2\pi} \frac{d\theta}{5 - 3\sin\theta}.$$
 (10 points)

(b)
$$\oint_C \frac{e^z}{z^3 + z} dz$$
, where $C = \{z : |z| = 2\}.$ (10 points)

(4) Evaluate
(a)
$$\int_{-\infty}^{\infty} \frac{dx}{(x^2+1)(x^2+4)}$$
. (10 points)

(b)
$$\int_0^\infty \frac{\cos 2x}{x^2 + 1} \, dx. \tag{10 points}$$

(5) Use residues to evaluate the principal value of $\int_0^\infty \frac{dx}{x^{\frac{1}{3}}(1+x)}$. (20 points)

Department of Mathematics and Computer Science

MATH 352 Complex Analysis II

Make-up June 9, 2008, 10:00-11:50

QUESTIONS

(1) (a) Evaluate
$$\frac{1}{\pi i} \oint_C \frac{\tan z}{(3z - \pi)^3} dz$$
 where $C = \{z : |z| = 1\}.$ (10 points)

- (b) Evaluate $\int_{C} (12z^2 4iz) dz$ where C is the curve $y = x^2$ joining points (1, 1) and (2, 4), (10 points)
- (2) Evaluate.

(a)
$$\int_0^{2\pi} \frac{d\theta}{5 - 3\sin\theta}.$$
 (10 points)

(b)
$$\int_{-\infty}^{\infty} \frac{dx}{(x^2+1)(x^2+2x+1)}$$
. (10 points)

- (3) (a) Find all functions f(z) which are analytic in |z| < 1 and which satisfy the conditions (a) f(0) = 1, (b) $|f(z)| \ge 1$ for |z| < 1. (10 points)
 - (b) Prove that all the zeros of the polynomial $z^3 + z^2 + 3$ lie in the annulus 1 < |z| < 2.

(10 points)

(4) Show that

$$\sum_{n=-\infty}^{\infty} \frac{1}{n^2+4} = \frac{\pi}{2} \coth(2\pi)$$

(20 points)

(5) Evaluate

(a)
$$\oint_{|z|=3} \frac{(z-1)^3}{z(z+2)^3} dz$$
 (10 points)

(b)
$$\oint_C \frac{dz}{z^2 \sinh z}$$
 where $C = \{z : |z| = 1\}.$ (10 points)