ÇANKAYA UNIVERSITY

Department of Mathematics and Computer Science

MATH 352 Complex Analysis II
$1{ }^{\text {st }}$ Midterm
March 29, 2007
11:40-13:30

- The exam consists of 5 questions of equal weight.
- Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- Show all your work. Correct answers without sufficient explanation might not get full credit.
- Calculators are not allowed.

GOOD LUCK!

Please do not write below this line.

Q1	Q2	Q3	Q4	Q5	TOTAL
20	20	20	20	20	100

Question 1. Expand $f(z)=\frac{z}{(z-1)(2-z)}$ in a Laurent series valid for
(a) $|z|<1$.
(5 points)
(b) $1<|z|<2$.
(5 points)
(c) $|z|>2$.
(5 points)
(d) $|z-1|>1$.

Answer 1.

$$
\frac{z}{(z-1)(2-z)}=\frac{A}{z-1}+\frac{B}{2-z} \Rightarrow A(2-z)+B(z-1)=z, \quad z=2 \Rightarrow
$$

$$
B=2 \text { and } z=1 \quad \Rightarrow A=1 \text {. So } f(z)=\frac{1}{z-1}+\frac{2}{2-z}
$$

(a) $f(z)=\frac{-1}{1-z}+\frac{2}{2\left(1-\frac{z}{2}\right)}=-\sum_{k=0}^{\infty} z^{k}+\sum_{k=0}^{\infty} \frac{z^{k}}{2^{k}}$
(b) $\quad f(z)=\frac{1}{z\left(1-\frac{1}{z}\right)}+\frac{2}{2\left(1-\frac{z}{2}\right)}=\frac{1}{z} \sum_{k=0}^{\infty} \frac{1}{z^{k}}+\sum_{k=0}^{\infty} \frac{z^{k}}{2^{k}}$
(c) $\quad f(z)=\frac{1}{z\left(1-\frac{1}{z}\right)}-\frac{2}{z\left(1-\frac{2}{z}\right)}=\frac{1}{z} \sum_{k=0}^{\infty} \frac{1}{z^{k}}-\frac{2}{z} \sum_{k=0}^{\infty} \frac{2^{k}}{z^{k}}$
(d)

$$
\begin{aligned}
f(z)=\frac{1}{z-1}-\frac{2}{(z-1)-1} & =\frac{1}{z-1}-\frac{2}{z-1} \frac{1}{1-\frac{1}{z-1}} \\
& =\frac{1}{z-1}-\frac{2}{z-1} \sum_{k=0}^{\infty} \frac{1}{(z-1)^{k}}
\end{aligned}
$$

Question 2. Let $f(z)=\frac{1-e^{z}}{z^{3}}$.
(a) Locate the zeros of f and determine the order of each zero.
(10 points)
(b) Locate the poles of f and determine the order of each pole, and find the corresponding residue.

Answer 2.

$$
\begin{aligned}
& 1-e^{z}=0 \Rightarrow \quad e^{z}=1 \Rightarrow \quad z=2 n \pi i \quad \text { for } n \in \mathbb{Z} \quad \text { and } \\
& \left.\frac{d}{d z}\left(1-e^{z}\right)\right|_{z=2 n \pi i}=-\left.e^{z}\right|_{z=2 n \pi i}=-1 \neq 0 \text {. Therefore } 1-e^{z} \text { has }
\end{aligned}
$$

simple zeros at $z=2 n \pi i, n \in \mathbb{Z}$
Clearly, z^{3} has a zero of order 3 at the origin.
(a) By previous discussion, f has simple zeros at $z=2 n \pi i, \quad n \in \mathbb{Z} \backslash\{0\}$.
(b) Similarly, f has a double pole at the origin, and

$$
\begin{aligned}
\operatorname{Res}_{z=0} f(z) & =\lim _{z \rightarrow 0} \frac{d}{d z}\left(\frac{1-e^{z}}{z^{3}} \cdot z^{2}\right)=\lim _{z \rightarrow 0} \frac{d}{d z} \frac{1-e^{z}}{z} \\
& =\lim _{z \rightarrow 0} \frac{-e^{z} \cdot z-\left(1-e^{z}\right)}{z^{2}}=\lim _{z \rightarrow 0} \frac{-z e^{z}+e^{z}-1}{z^{2}} \\
& \stackrel{\text { LR. }}{ }=\lim _{z \rightarrow 0} \frac{-e^{z}-z e^{z}+e^{z}}{2 z}=\lim _{z \rightarrow 0}-\frac{e^{z}}{2}=-\frac{1}{2} .
\end{aligned}
$$

$O R$

$$
\begin{aligned}
& \frac{1-e^{z}}{z^{3}}=\frac{1-\left(1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots\right)}{z^{3}} \\
&=-\frac{1}{z^{2}}-\frac{1}{2 z}-\frac{1}{6}-\cdots \\
& \Rightarrow \quad \operatorname{Res} f(z)=-\frac{1}{2}
\end{aligned}
$$

Question 3. Show that $\int_{0}^{2 \pi} \frac{d \theta}{(5-3 \sin \theta)^{2}}=\frac{5 \pi}{32}$.
(20 points)

Answer 3.

Put $z=e^{i \theta}$, then $d z=i e^{i \theta} d \theta \Rightarrow d \theta=\frac{d z}{i e^{i \theta}}=\frac{d z}{i z}$, and $\frac{1}{2 i}\left(z-\frac{1}{z}\right)=\frac{1}{2 i}(\cos \theta+i \sin \theta-(\cos \theta-i \sin \theta))=\sin \theta \Rightarrow \sin \theta=\frac{z^{2}-1}{2 i z}$

Then

$$
\begin{aligned}
I & =\int_{0}^{2 \pi} \frac{d \theta}{(5-3 \sin \theta)^{2}}=\int_{|z|=1}^{\left(5-\frac{3\left(z^{2}-1\right)}{2 i z}\right)^{2} i z} \\
& =\int_{|z|=1}^{\left(3 z^{2}-10 i z-3\right)^{2}} d z=\int_{|z|=1}^{\left[3\left(z-\frac{i}{3}\right)(z-3 i)\right]^{2}} d z \\
& \left.=2 \pi i \operatorname{Res} \frac{4 i z}{} \frac{4 i z}{3\left(z-\frac{i}{3}\right)(z-3 i)}\right]^{2} \\
& =2 \pi i \lim _{z \rightarrow \frac{i}{3}} \frac{d}{d z} \frac{4 i z}{(3(z-3 i))^{2}} \\
& =2 \pi i \lim _{z \rightarrow \frac{i}{3}}^{4 i(3(z-3 i))^{2}-18(z-3 i) 4 i z} \\
& =2 \pi i\left[\frac{(3(z-3 i))^{4}}{\left(3\left(\frac{i}{3}-3 i\right)\right)^{2}}-\frac{6 \cdot 4 i \cdot \frac{i}{3}}{\left(3\left(\frac{i}{3}-3 i\right)\right)^{3}}\right]=2 \pi i\left(-\frac{1}{16} i+\frac{1}{64 i}\right) \\
& =\frac{\pi}{8}+\frac{\pi}{32}=\frac{5 \pi}{32}
\end{aligned}
$$

Question 4. Choose one of the integrals below and evaluate. If you evaluate more than one integral, 10 more points will be given for each extra solution.
(20 points)
(a) $\int_{0}^{\infty} \frac{x^{\frac{1}{2}}}{(1+x)^{2}} d x$.
(b) P.V. $\int_{-\infty}^{\infty} \frac{x^{2}}{x^{4}-1} d x$.
(c) P.V. $\int_{-\infty}^{\infty} \frac{x \sin \pi x}{x^{2}+2 x+5} d x$.

Answer 4. courrider the branch of $z^{1 / 2}$ defined on
(a)

$$
\mathbb{C} \backslash \mathbb{R}_{+} b y z^{1 / 2}=|z|^{1 / 2} e^{i \frac{1}{2} \arg z}, \quad 0<\arg z<2 \pi
$$

Let $f(z)=\frac{z^{1 / 2}}{(1+z)^{2}}$. Then
$2 \pi i \operatorname{Res} f(z)=\bigotimes_{z=-1} f(z)=\int_{0}^{R} \frac{x^{1 / 2}}{(1+x)^{2}} d x+\int_{C_{R}} \frac{z^{1 / 2}}{(1+z)^{2}} d z+\int_{R}^{0} \frac{x^{\frac{1}{2}} e^{i x}(1+x)^{2}}{(1)} d x$

$$
2 \pi i \lim _{z \rightarrow-1} \frac{d}{d z} z^{1 / 2}=2 \int_{0}^{R} \cdot \frac{x^{1 / 2}}{(1+x)^{2}} d x+\int_{C_{R}} \frac{z^{1 / 2}}{(1+z)^{2}} d z
$$

Note that $\left|\int_{C_{R}} \frac{z^{1 / 2}}{(1+t)^{2}} d t\right| \leqslant \frac{\sqrt{R}}{(R-1)^{2}} \cdot 2 \pi R \rightarrow 0$ as $R \rightarrow \infty$
Then

$$
\int_{0}^{\infty} \frac{x^{\frac{1}{2}}}{(1+x)^{2}} d x=\left.\pi i \cdot \frac{1}{2 z^{\frac{1}{2}}}\right|_{z=-1}=\frac{\pi i}{2 \cdot 1 \cdot e^{\frac{1}{2} \cdot \pi_{i}}}=\frac{\pi}{2} .
$$

(b) $\operatorname{deg}\left(x^{2}\right)+2 \leq \operatorname{deg}\left(x^{4}-1\right)$ and $x^{4}-1=\underbrace{(x-1)(x+1)(x-i)(x+i)}_{\text {on } \mathbb{R}}$
\Rightarrow P.V. $\int_{-\infty}^{\infty} \frac{x^{2}}{x^{4}-1} d x=2 \pi i \operatorname{Res} \frac{z^{2}}{z=i}+\pi i\left(\operatorname{Res}_{z=1}^{z^{4}-1} \frac{z^{2}}{z^{4}-1}+\operatorname{Res}_{z=-1} \frac{z^{2}}{z^{4}-1}\right)$

$$
=2 \pi i \cdot \frac{i^{2}}{\left(i^{2}-1\right) \not x y}+\pi i \frac{1 /}{2(1+1)}+\pi i \frac{l}{\neq 2(1+1)}=\frac{\pi}{2} .
$$

(c) $\operatorname{deg}(x)+1 \leq \operatorname{deg}\left(x^{2}+2 x+5\right)$ and $x^{2}+2 x+5=$ onthe upper half plane $_{(x+1-2 i)(x+1+2 i)}$
\Rightarrow P.V. $\int_{-\infty}^{\infty} \frac{x \sin \pi x}{x^{2}+2 x+5} d x=2 \pi \operatorname{Re}\left(\operatorname{les}_{z=-1+2 i} \frac{e^{i \pi z} z}{z^{2}+2 z+5}\right)$

$$
=2 \pi \operatorname{Re} \quad \frac{e^{i \pi(-1+2 i)}(-1+2 i)}{4 i}=2 \pi \operatorname{Re}\left(\frac{1-2 i}{4 i}\right) e^{-2 \pi}=-\pi e^{-2 \pi} .
$$

Question 5.
(a) Prove that all the roots of

$$
z^{7}-5 z^{3}+12=0
$$

lie between the circles $|z|=1$ and $|z|=2$.
(b) Let $f(z)=\frac{\left(z^{2}+1\right)^{2}}{\left(z^{2}+2 z+2\right)^{3}}$. Evaluate

$$
\frac{1}{2 \pi i} \oint_{C} \frac{f^{\prime}(z)}{f(z)} d z
$$

where C is the circle $|z|=4$.

Answer 5.
(a)

on c_{1}, let $f_{1}=12 \quad f_{2}=z^{7}-5 z^{3}$
clearly $\quad\left|f_{1}\right|=12$ on c_{1} and $\left|f_{2}\right| \leqslant 1+5=6$ on c_{1} and $\quad Z_{f_{1}}=Z_{f_{1}+f_{2}}=0$ inside and on c_{1}
(That is, $z^{7}-5 z^{3}+12$ has no zeros inside and on C_{1})
on c_{2}, let $f_{1}=z^{7} \quad f_{2}=-5 z^{3}+12 . \quad\left|f_{1}\right|=128$ and

$$
\left|f_{2}\right| \leqslant 5.8+12=52 \text { on } c_{2} \text { so } z_{f_{1}}=z_{f_{1}+f_{2}}=7 \text { inside and on } C_{2} \text {. }
$$

Since $z^{7}-5 z^{3}+12$. has 7 zeros, all of them lie between the circles $|t|=1$ and $|z|=2$.
(b)

$$
f(z)=\frac{(z-i)^{2}(z+i)^{2}}{(z+1-i)^{3}(z+1+i)^{3}}
$$

f has double zeros at i and $-i$
and f has triple pole at $-1+i$ and $-1-i$ all of them are included inside the circle $|z|=4$. Then by the Argument principle

$$
\frac{1}{2 \pi i} \int_{c} \frac{f^{\prime}(z)}{f(t)} d z=z_{f}-p_{f}=4-6=-2
$$

ÇANKAYA UNIVERSITY

Department of Mathematics and Computer Science

MATH 352 Complex Analysis II
$2^{\text {nd }}$ Midterm
May 17, 2007
11:40-13:30

- The exam consists of 5 questions of equal weight.
- Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- Show all your work. Correct answers without sufficient explanation might not get full credit.
- Calculators are not allowed.

GOOD LUCK!

Please do not write below this line.

Q1	Q2	Q3	Q4	Q5	TOTAL
20	20	20	20	20	100

Question 1. Show that $\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90}$.

Answer 1.

Let $f(z)=\frac{1}{z^{4}} \cot \pi z \quad$ and $\quad L_{n}$:

$$
=\frac{1}{z^{4}} \frac{\cos \pi z}{\sin \pi z}
$$

Then

$$
\sum_{L_{n}} f(z) d z=2 \pi i \sum_{k=-n}^{n} \operatorname{Res} f(z)=2 \pi i\left(\sum_{\substack{k=-n \\ k \neq 0}}^{n} \operatorname{Res} f(z)+\operatorname{Res}_{z=0} f(z)\right)
$$

We have proved in class that $\exists C>0$ (not depending on n) such that $|\cot \pi z|<C$ for all $z \in L_{n}$. Therefore

$$
|\oiint f(z) d z| \leqslant \frac{C}{\left(n+\frac{1}{2}\right)^{4}} 4(2 n+1) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

f has a pole of order 5 at $z=0$ and simple poles at $-n \leq k \leq n, k \neq 0$. Thus,

$$
\begin{aligned}
\operatorname{Res}_{\substack{z=k \\
k \neq 0}} f(z) & =\lim _{z \rightarrow k} \frac{1}{z^{4}} \frac{\cos \pi z}{\sin \pi z}(z-k)=\frac{\cos \pi k}{k^{4}} \lim _{z \rightarrow k} \frac{z-k}{\sin \pi z} \\
& =\frac{\cos \pi k}{k^{4}} \lim _{z \rightarrow k} \frac{1}{\pi \cos \pi z}=\frac{\cos \pi k}{k^{4} \pi \cos \pi k}=\frac{1}{\pi k^{4}} .
\end{aligned}
$$

To find the residue at $z=0$, we can use the series division

$$
\begin{aligned}
& \text { the residue at } z=0 \text {, } \\
& \frac{1}{z^{4}} \frac{\cos \pi z}{\sin \pi z}=\frac{1}{z^{4}} \frac{1-\frac{\pi^{2} z^{2}}{2!}+\frac{\pi^{4} z^{4}}{4!}-\frac{\pi^{6} z^{6}}{6!}+\cdots}{\pi z-\frac{\pi^{3} z^{3}}{3!}+\frac{\pi^{5} z^{5}}{5!}-\frac{\pi^{7} z^{7}}{7!}+\cdots}=\frac{1}{\pi z^{5}} \frac{1-\frac{\pi^{2} z^{2}}{2!}+\cdots}{1-\frac{\pi^{2} z^{2}}{3!}+\cdots}
\end{aligned}
$$

$$
=\frac{1}{\pi z^{5}}\left(1+a_{1} z+a_{2} z^{2}+\cdots\right) \quad \text { and } \quad \operatorname{Res} f(z)=\frac{a_{4}}{\pi}
$$

So, $\quad \sum_{k=1}^{\infty} \frac{1}{n^{4}}=\frac{1}{2} \sum_{\substack{k=-\infty \\ k \neq 0}}^{\infty} \frac{1}{k^{4}}=\frac{1}{2}(-\pi) \operatorname{Res}_{z=0} f(z)=-\frac{a_{4}}{2}$. it only remains

$$
k \neq 0
$$

to find a_{4}. Note that
$\left(1-\frac{\pi^{2} z^{2}}{2!}+\frac{\pi^{4} z^{4}}{4!} \cdots\right)=\left(1-\frac{\pi^{2} z^{2}}{3!}+\frac{\pi^{4} z^{4}}{5!}-\cdots\right)\left(1+a_{1} z+a_{2} z^{2}+a_{3} z^{3}+a_{4} z^{4}+\cdots\right)$
implies $\quad a_{1}=0, \quad-\frac{\pi^{2}}{2}=a_{2}-\frac{\pi^{2}}{6}, \quad 0=a_{3}-\frac{\pi^{2} a_{1}}{6}$ and
$\frac{\pi^{4}}{24}=a_{4}-\frac{\pi^{2}}{6} a_{2}+\frac{\pi^{4}}{120}$. Solving these equations we get $a_{4}=-\frac{\pi^{4}}{45}$,
and so $\quad \sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90}$.

Question 2. Evaluate $\oint_{|z|=\frac{37}{2}} \frac{z^{19} \sin \frac{1}{z}}{(z-1)(z-2)(z-3) \cdots(z-19)} d z$.

Answer 2.

$$
\begin{array}{r}
I=\oint_{|z|=\frac{37}{2}} \frac{z^{19} \sin \frac{1}{z}}{(z-1)(z-2) \cdots(z-19)} d z=2 \pi i\left(\sum_{k=0}^{18} \operatorname{Res} f(z)\right) \\
=-2 \pi i\left(\begin{array}{l}
\left.\operatorname{Res} f(z)+\operatorname{Res}_{z=19} f(z)\right)
\end{array} .\right.
\end{array}
$$

f has a simple pole at $z=19$, and

$$
\begin{aligned}
\operatorname{Res}_{z=19} f(z) & =\lim _{z \rightarrow 19} \frac{z^{19} \sin \frac{1}{z}}{(z-1) \cdots(z-19)}(z-19)=\frac{19^{19} \sin \frac{1}{19}}{18.17 \cdots 1} \\
& =\frac{19^{19} \sin \frac{1}{19}}{18!}
\end{aligned}
$$

Note that

$$
\lim _{z \rightarrow \infty} \frac{z^{19} \sin \frac{1}{z}}{(z-1)(z-2) \ldots(z-19)}=\lim _{z \rightarrow \infty} \sin \frac{1}{z}=0
$$

and $s \sigma$

$$
\begin{aligned}
\operatorname{Res}_{z=\infty} f(z)=-\lim _{z \rightarrow \infty} z f(z) & =-\lim _{z \rightarrow \infty} \frac{z^{20} \sin \frac{1}{z}}{(z-1) \cdots(z-19)} \\
& =-\lim _{z \rightarrow \infty} \frac{\sin \frac{1}{z}}{\frac{1}{z}}=-1
\end{aligned}
$$

Therefore,

$$
I=-2 \pi i\left(\frac{19^{19} \sin \frac{1}{19}}{18!}-1\right)
$$

Question 3. Find the inverse Laplace transform of $F(s)=\frac{5 s-7}{s^{3}-2 s^{2}-s+2}$.
(20 points)
Answer 3.

One can easily show that

$$
s^{3}-2 s^{2}-s+2=(s-1)(s-2)(s+1)
$$

Let $F(s)=\frac{5 s-7}{s^{3}-2 s^{2}-s+2}$. Let C_{R} be the
circular part of the contour shown below.

$$
\begin{aligned}
\text { on } & C_{R}, \\
|F(s)| & \leq \frac{5|s|+7}{(|s|-1)(|s|-2)(|s|-1)} \\
& \leq \frac{5(\varphi+R)+7}{(R-\varphi-1)(R \cdot \varphi-2)(R-\varphi-1)} \\
& \rightarrow 0 \text { as } R \rightarrow \infty
\end{aligned}
$$

Thus,

$$
\begin{aligned}
f(t) & =\operatorname{Res} \frac{5 s-7}{s=1} s^{3}-2 s^{2}-s+2
\end{aligned} e^{s t}+\operatorname{Res} \frac{5 s-7}{s=2} s^{s}-2 s^{2}-s+2 \quad e^{s t}+\operatorname{Res} \frac{5 s-7}{s=-1 s^{3}-2 s^{2}-s+2}
$$

clearly,

$$
\begin{aligned}
& A=\lim _{s \rightarrow 1} \frac{5 s-7}{(s-2)(s+1)} e^{s t}=\frac{-2 e^{t}}{(-1)(2)}=e^{t} \\
& B=\lim _{s \rightarrow 2} \frac{5 s-7}{(s-1)(s+1)} e^{s t}=\frac{3 e^{2 t}}{1 \cdot 3}=e^{2 t} \\
& C=\lim _{s \rightarrow-1} \frac{s s-7}{(s-1)(s-2)} e^{s t}=\frac{-12 e^{-t}}{(-2)(-3)}=-2 e^{-t},
\end{aligned}
$$

and so $\quad f(t)=e^{t}+e^{2 t}-2 e^{-t}$.

Question 4. Find the bilinear transformation $w=f(z)$ that maps
(a) the half plane $\{z: \operatorname{Re} z>-3\}$ onto the disk $\{w:|w-2|<2\}$ in such a way that $f(-3)=0$ and $f(0)=1$.
(10 points)
(b) the upper half plane $\{z: \operatorname{Im} z>0\}$ onto the unit disk $\{w:|w|<1\}$ in such a way that $f(i)=0$ and $f^{\prime}(i)=\frac{1}{2}$.
(10 points)

Answer 4.

By symmetry, -6 is mapped onto $-2(-6$ is symmetric to 0 with respect to the line $\operatorname{Rez}=-3$, so the image of -6 should be symmetric to the image of 0 , which is 1 with respect to the circle $|\omega-2|=2$, and clearly, 1 and -2 are symmetric with respect to the circle $|\omega-2|=2$.)
Thus, $-3,0,-6$ are mapped onto $0,1,-2$ respectively. Then, a formula seen in class gives the desired bilinear map

$$
\begin{aligned}
& \frac{z+3}{z+6} \cdot \frac{6}{3}=\frac{w}{w+2} \cdot \frac{3}{1} \Rightarrow \\
& (2 z+6)(w+2)=(z+6) 3 w \Rightarrow w=\frac{4 z+12}{z+12} .
\end{aligned}
$$

(b) The general form of the bilinear map which maps the upper half plane onto the unit disk $f(z)=e^{i \gamma} \frac{z-\alpha}{z-\bar{\alpha}}$ and α to the origin is: So $\alpha=i$, we will use the second condition to find γ. $f^{\prime}(z)=\frac{e^{i \gamma}(z+i)-(z-i)}{(z+i)^{2}} \Rightarrow f^{\prime}(i)=\frac{e^{i \gamma}}{2 i}=\frac{1}{2} \Rightarrow e^{i \gamma}=i$ and

$$
f(z)=i \frac{z-i}{z+i}=\frac{i z+1}{z+i}
$$

Question 5. Map the region $G=\{z:|z-2|<2\} \backslash\{z:|z-1| \leq 1\}$, which is shown below, onto the unit disk.

$$
w=\frac{z_{5}-i}{z_{5}+i}
$$

ÇANKAYA UNIVERSITY

Department of Mathematics and Computer Science

MATH 352 Complex Analysis II
 Final

May 21, 2007
11:30-13:30

- The exam consists of 5 questions of equal weight.
- Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- Show all your work. Correct answers without sufficient explanation might not get full credit.
- Calculators are not allowed.

GOOD LUCK!

Please do not write below this line.

Q1	Q2	Q3	Q4	Q5	TOTAL
20	20	20	20	20	100

Question 1. Find and classify all the singularities of the functions below, including the singularity at infinity and find the corresponding residues.
(a) $e^{\frac{1}{x-2}}$.
(b) $\frac{3 z^{3}}{z(z-2)\left(z^{2}+1\right)}$.
(c) $\frac{\sin z}{z^{3}}$.

Answer 1.

(a) Since $e^{\frac{1}{z-2}}=1+\frac{1}{z-2}+\frac{1}{2^{\prime}(z-2)^{2}}+\cdots, \quad|z-2|>0$
and $\quad \lim _{z \rightarrow \infty} e^{\frac{1}{z-2}}=1$, f has an essential singularity at 2 and a removable singularity, at ∞. f has no other singularities. Clearly Res $e^{\frac{1}{z-2}}=1$ and so

$$
\operatorname{Res}_{z=\infty} e^{\frac{1}{z-2}}=-1
$$

$$
z=2
$$

(b) f has simple poles at $2, i,-i$ and removable singularity at ∞ (Because $\lim _{z \rightarrow \infty} f(z)$ exists) And,

$$
\begin{aligned}
& \operatorname{Res}_{z=2} f(z)=\lim _{z \rightarrow 2} \frac{3 z^{2}}{z^{2}+1}=\frac{12}{5} \\
& \operatorname{Res} f(z)=\lim _{z \rightarrow i} \frac{3 z^{2}}{(z-2)(z+i)}=\frac{-3}{(i-2) 2 i}=\frac{3-6 i}{10} \\
& \operatorname{Res} f(z)=\lim _{z \rightarrow-i} \frac{3 z^{2}}{(z-2)(z-i)}=\frac{-3}{(-i-2)(-2 i)}=\frac{3+6 i}{10}
\end{aligned}
$$

$$
\operatorname{Res}_{z=\infty} f(z)=-\left(\frac{12}{5}+\frac{3-6 i}{10}+\frac{3+6 i}{10}\right)=-3
$$

(c) $\quad \frac{\sin z}{z^{3}}=\frac{z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\frac{z^{7}}{7!}+\cdots}{z^{3}}$

$$
=\frac{1}{z^{2}}-\frac{1}{3!}+\frac{z^{2}}{51}-\cdots, \quad,|z|>0
$$

$\Rightarrow \quad f$ has a pole of order 2 with residue 0 at the origin and an essential singularity at the infinity with residue 0

Question 2. Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{2+\cos \theta}$.

Answer 2.

put $z=e^{i \theta}$, then $d \theta=\frac{d z}{i z}$ and $\cos \theta=\frac{z^{2}+1}{2 z}$

Moreover

$$
\begin{aligned}
I=\int_{0}^{2 x} \frac{d \theta}{2+\cos \theta} & =\int_{|z|=1} \frac{1}{2+\frac{z^{2}+1}{2 z}} \frac{d z}{i z} \\
& =\frac{2}{i} \oint_{|z|=1} \frac{d z}{z^{2}+4 z+1} \\
& =\frac{2}{i}-2 \pi i \quad \operatorname{Res} \quad \frac{1}{z^{2}+4 z+1} \\
& =4 \pi \lim _{z \rightarrow-2+\sqrt{3}} \frac{1}{z+2+\sqrt{3}} \\
& =4 \pi \frac{1}{2 \sqrt{3}}=\frac{2 \pi}{\sqrt{3}}
\end{aligned}
$$

$$
\begin{aligned}
z^{2}+4 z+1 & =0 \Rightarrow \\
z & =\frac{-4+(16-4.1 .1)^{1 / 2}}{2} \\
& =\frac{-4 \pm 2 \sqrt{3}}{2} \\
& =-2 \pm \sqrt{3}
\end{aligned}
$$

Question 3. Map the region

$$
G=\mathbb{C} \backslash(\{z: \operatorname{Re} z=0,-2 \leq \operatorname{Im} z \leq 2\} \cup\{z:-2 \leq \operatorname{Re} z \leq 2, \operatorname{Im} z=0\})
$$

shown in the figure below onto the upper half plane.
(20 points)

Answer 3.

$z_{2}=z_{1}+\sqrt{z_{1}^{2}-1}$
\longrightarrow

$z_{5}=\frac{z_{4}}{A}$

$A=\frac{1}{2}\left(\sqrt{2}+1+\frac{1}{\sqrt{2}+1}\right)$
$z_{3}=i z_{2}$

$\omega=\frac{i z_{6}+1}{1-z_{6}}$

(For the last map
$\omega=\frac{z-i}{z+i}$ map the upper half plane onto the unit disk, so the inverse of this map maps the unit disk onto the upper half plane: $\omega(z+i)=z-i \Rightarrow z \omega+i \omega=z-i$
$\Rightarrow z(\omega-1)=-i-i \omega \Rightarrow z=\frac{i \omega+i}{1-\omega}$.

Question 4.
(a) Evaluate P.V. $\int_{-\infty}^{\infty} \frac{x}{x^{3}+1} d x$.
(10 points)
(b) Evaluate $\oint_{|z|=3} \frac{z^{3}(1-3 z)}{(1+z)\left(1+2 z^{4}\right)} d z$.
(10 points)

Answer 4.

(a)

$$
\begin{aligned}
& x^{3}+1=\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right) \quad \text { where } \quad x_{1}=-1 \text { (on the seal axis) } \\
& x_{2}=\frac{1-\sqrt{3} i}{2} \\
& x_{3}=\frac{1+\sqrt{3} i}{2} \text { con the upper } \\
& \text { half plane) }
\end{aligned}
$$

Since $\quad \operatorname{deg}\left(x^{3}+1\right) \geqslant \operatorname{deg}(x)+2$,

$$
\begin{aligned}
& \text { P.v. } \begin{aligned}
& \int_{-\infty}^{\infty} \frac{x}{x^{3}+1} d x=2 \pi i \operatorname{Res}_{z=\frac{1+\sqrt{3} i}{2}} \frac{z}{z^{3}+1}+\pi i \operatorname{Res}_{z=-1} \frac{z}{z^{3}+1} \\
&\left.=2 \pi i \lim _{z \rightarrow \frac{1+\sqrt{3}}{2}} \frac{z}{(z+1)\left(z-\frac{1}{2}+i \sqrt{3}\right.}\right)+\pi i \lim _{z \rightarrow-1} \frac{z}{z^{2}-z+1} \\
&=2 \pi i \frac{\frac{1}{2}+\frac{\sqrt{3}}{2} i}{\left(\frac{3}{2}+\frac{\sqrt{3}}{2} i\right) i \sqrt{3}}+\pi i \frac{-1}{3}=\frac{\pi \sqrt{3}}{3}
\end{aligned} .
\end{aligned}
$$

(b)

All singularities are inside the contour, thus we can use single residue theorem

$$
\oint_{|z|=3} \frac{z^{3}(1-3 z)}{(1+z)\left(1+2 z^{4}\right)} d z=2 \pi i \operatorname{Res}_{z=0} \frac{1}{z^{2}} \frac{\frac{1}{z^{3}}\left(1-\frac{3}{z}\right)}{\left(1+\frac{1}{z}\right)\left(1+\frac{2}{z^{4}}\right)}
$$

$$
\begin{aligned}
& =2 \pi i \operatorname{Res}_{z=0} \frac{z-3}{z(z+1)\left(z^{4}+2\right)} \\
& =2 \pi i \frac{-3}{1 \cdot 2}=-3 \pi i
\end{aligned}
$$

Question 5. Use the Schwarz-Christoffel formula to show that the function $w=f(z)=\log z$ maps the upper half plane $\{z: \operatorname{Im} z>0\}$ onto the infinite strip $\{w: 0<\operatorname{Im} w<\pi\}$. Hint: Set $x_{1}=-1, x_{2}=0, w_{1}=i \pi$, and $w_{2}=-d$ and let $d \rightarrow \infty$. The figure below may help. (20 points)

(maps the shaded region above to the upper half plane)

$$
\begin{aligned}
f(z) & =A \int(z+1)^{-0} z^{-\frac{\pi}{\pi}} d z+B=A \int \frac{1}{z} d z+B \\
& =A \log z+B=A(\ln |z|+i \operatorname{Arg} z)+B
\end{aligned}
$$

f maps -1 to i π
and
0 to ∞
clearly
$A=1, B=0$ gives the desined
conditions

$$
f(-1)=i \pi \quad \text { and } \quad f(0)=\infty
$$

ÇANKAYA UNIVERSITY

Department of Mathematics and Computer Science

MATH 352 Complex Analysis II
Make up for the $1^{\text {st }}$ Midterm
June 13, 2007
15:00-17:00

- The exam consists of 5 questions of equal weight.
- Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- Show all your work. Correct answers without sufficient explanation might not get full credit.
- Calculators are not allowed.

GOOD LUCK!

Please do not write below this line.

Q1	Q2	Q3	Q4	Q5	TOTAL
20	20	20	20	20	100

Question 1. Expand $f(z)=\frac{z+1}{z^{3}\left(z^{2}+1\right)}$ in a Laurent series valid for
(a) $0<|z|<1$.
(5 points)
(b) $1<|z|<\infty$.
(5 points)
(c) $0<|z-i|<1$.
(5 points)
(d) $1<|z-i|<2$.
(5 points)

Answer 1.

Question 2. Let $f(z)=\frac{z^{2}-2 z}{(z+1)^{2}\left(z^{2}-4\right)}$.
(a) Locate the zeros of f and determine the order of each zero.
(b) Locate the poles of f and determine the order of each pole, and find the corresponding residue.
(15 points)

Answer 2.

Question 3. Show that $\int_{0}^{2 \pi} \frac{\cos 3 \theta}{5-4 \cos \theta} d \theta=\frac{\pi}{12}$.
Answer 3.

Question 4. Choose one of the integrals below and evaluate. If you evaluate more than one integral, 10 more points will be given for each extra solution.
(a) $\int_{0}^{\infty} \frac{x^{\frac{1}{3}}}{(1+x)^{2}} d x$.
(b) $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{2}}$.
(c) $\int_{0}^{\infty} \frac{\sin 2 x}{x\left(x^{2}+5\right)} d x$.

Answer 4.

Question 5.

(a) Determine the number of roots of the equation $z^{8}-z^{3}+z+18=0$ on
(i) $|z|<1$,
(ii) $1 \leq|z|<2$.
(4 points)
(4 points)
(ii) $|z| \geq 2$.
(b) Let C denote the unit circle $|z|=1$, described in the positive sense. Determine the value of $\triangle_{C} \arg f(z)$ when
(i) $f(z)=\frac{z^{3}+2}{z}$.
(5 points)
(ii) $f(z)=\frac{(2 z-1)^{7}}{z^{3}}$.
(5 points)

Answer 5.

ÇANKAYA UNIVERSITY

Department of Mathematics and Computer Science

MATH 352 Complex Analysis II

Make up for the $1^{\text {st }}$ and $2^{\text {nd }}$ Midterms
June 13, 2007
15:00-17:00

- The exam consists of 5 questions of equal weight.
- Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- Show all your work. Correct answers without sufficient explanation might not get full credit.
- Calculators are not allowed.

GOOD LUCK!

Please do not write below this line.

Q1	Q2	Q3	Q4	Q5	TOTAL
20	20	20	20	20	100

Question 1. Choose one of the integrals below and evaluate. If you solve two of them, 20 more points will be given.
(a) $\int_{0}^{\infty} \frac{x^{\frac{1}{3}}}{(1+x)^{2}} d x$.
(b) $\int_{0}^{\infty} \frac{\sin 2 x}{x\left(x^{2}+5\right)} d x$.

Answer 1.

Question 2.

(a) Determine the number of roots of the equation $z^{8}-z^{3}+z+18=0$ on
(i) $|z|<1$,
(ii) $1 \leq|z|<2$.
(4 points)
(4 points)
(ii) $|z| \geq 2$.
(b) Let C denote the unit circle $|z|=1$, described in the positive sense. Determine the value of $\triangle_{C} \arg f(z)$ when
(i) $f(z)=\frac{z^{3}+2}{z}$.
(5 points)
(ii) $f(z)=\frac{(2 z-1)^{7}}{z^{3}}$.

Answer 2.

Question 3. Find the inverse Laplace transform of $F(s)=\frac{s+3}{(s-2)\left(s^{2}+1\right)}$.
Answer 3.

Question 4. Find the bilinear transformation $w=f(z)$ that maps
(a) the half plane $\{z: \operatorname{Re} z>-3\}$ onto the disk $\{w:|w-2|<2\}$ in such a way that $f(-3)=0$ and $f(0)=1$.
(b) the upper half plane $\{z: \operatorname{Im} z>0\}$ onto the unit disk $\{w:|w|<1\}$ in such a way that
$f(i)=0$ and $f^{\prime}(i)=\frac{1}{2}$.

Answer 4.

Question 5. Expand $f(z)=\frac{z+1}{z^{3}\left(z^{2}+1\right)}$ in a Laurent series valid for
(a) $0<|z|<1$.
(5 points)
(b) $1<|z|<\infty$.
(5 points)
(c) $0<|z-i|<1$.
(5 points)
(d) $1<|z-i|<2$.
(5 points)

Answer 5.

ÇANKAYA UNIVERSITY

Department of Mathematics and Computer Science

MATH 352 Complex Analysis II

Make up for the Final
June 13, 2007
15:00-17:00

- The exam consists of 5 questions of equal weight.
- Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- Show all your work. Correct answers without sufficient explanation might not get full credit.
- Calculators are not allowed.

GOOD LUCK!

Please do not write below this line.

Q1	Q2	Q3	Q4	Q5	TOTAL
20	20	20	20	20	100

Question 1. Let $f(z)=\frac{z^{2}-2 z}{(z+1)^{2}\left(z^{2}-4\right)}$.
(a) Find the zeros of f and determine the order of each zero.
(b) Find and classify the isolated singularities of f (including the singularity at infinity), and the corresponding residues.

Answer 1.

Question 2. Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{2+\cos \theta}$. (20 points)

Answer 2.

Question 3. Map the region

$$
G=\{z \in \mathbb{C}:|z|>1\} \backslash\{z \in \mathbb{C}:-2 \leq \operatorname{Re} z \leq 2, \operatorname{Im} z=0\}
$$

shown in the figure below onto the upper half plane.

Answer 3.

Question 4.
(a) Evaluate $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{2}}$.
(10 points)
(b) Evaluate $\oint_{|z|=3} \frac{(3 z+2)^{2}}{z(z-1)(2 z+5)} d z$.

Answer 4.

Question 5. Use the Schwarz-Christoffel formula to show that the function $w=f(z)=\log z$ maps the upper half plane $\{z: \operatorname{Im} z>0\}$ onto the infinite strip $\{w: 0<\operatorname{Im} w<\pi\}$. Hint: Set $x_{1}=-1, x_{2}=0, w_{1}=i \pi$, and $w_{2}=-d$ and let $d \rightarrow \infty$. The figure below may help. (20 points)

Answer 5.

