

MATH 352 Complex Analysis II

1st Midterm March 29, 2007 11:40-13:30

:	
:	

- The exam consists of 5 questions of equal weight.
- Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- \bullet Show all your work. Correct answers without sufficient explanation might <u>not</u> get full credit.
- $\bullet\,$ Calculators are $\underline{\mathrm{not}}$ allowed.

GOOD LUCK!

Please do $\underline{\text{not}}$ write below this line.

Q1	Q2	Q3	Q4	Q5	TOTAL
20	20	20	20	20	100

Question 1. Expand $f(z) =$	$=\frac{z}{(z-1)(2-z)}$ in a Laurent series valid for	
(a) $ z < 1$.		(5 points)
(b) $1 < z < 2$.		(5 points)
(c) $ z > 2$.	х. С	(5 points)
(d) $ z-1 > 1$.		(5 points)
		· - /

Answer 1.

$$\frac{z}{(z-1)(2-z)} = \frac{A}{z-1} + \frac{B}{2-z} \Rightarrow A(2-z) + B(z-1) = z, \quad z=2 \Rightarrow$$

B=2 and
$$z=1 \Rightarrow A=1$$
. So $f(z) = \frac{1}{2-1} + \frac{2}{2-2}$

(a)
$$f(z) = -\frac{1}{1-z} + \frac{2}{2(1-\frac{2}{2})} = -\frac{2}{k=0} \frac{2}{z} + \frac{2}{k=0} \frac{2^{k}}{2^{k}}$$

(b)
$$f(z) = \frac{1}{2(1-\frac{1}{2})} + \frac{2}{2(1-\frac{2}{2})} = \frac{1}{2}\sum_{k=0}^{\infty} \frac{1}{2^{k}} + \sum_{k=0}^{\infty} \frac{z^{k}}{2^{k}}$$

(c)
$$f(z) = \frac{1}{2(1-\frac{1}{2})} - \frac{2}{2(1-\frac{2}{2})} = \frac{1}{2} \sum_{k=0}^{\infty} \frac{1}{2^{k}} - \frac{2}{2} \sum_{k=0}^{\infty} \frac{2^{k}}{2^{k}}$$

(d)
$$f_{2} = \frac{1}{2-1} - \frac{2}{(2-1)-1} = \frac{1}{2-1} - \frac{2}{2-1} \frac{1}{1-\frac{1}{2-1}} = \frac{1}{2-1} - \frac{2}{2-1} \frac{1}{1-\frac{1}{2-1}} = \frac{1}{2-1} - \frac{2}{2-1} \sum_{k=0}^{\infty} \frac{1}{(2-1)^{k}}$$

Question 2. Let $f(z) = \frac{1 - e^z}{z^3}$.

- (a) Locate the zeros of f and determine the order of each zero.
- (b) Locate the poles of f and determine the order of each pole, and find the corresponding residue. (10 points)

(10 points)

Answer 2.

$$|-e^{2}=0 \Rightarrow e^{2}=1 \Rightarrow z=2n\pi i \text{ for } n\in\mathbb{Z} \text{ and}$$

$$\frac{d}{dz}(1-e^{2})|_{z=2n\pi i} = -e^{2}|_{z=2n\pi i} = -1 \neq 0 \text{ Therefore } 1-e^{2} \text{ has}$$

simple zeros at z=2n ti, n E Z.

Clearly, z³ has a zero of order 3 at the origin.

- (a) By previous discussion, f has simple zeros at $z=2n\pi i$, $n \in \mathbb{Z}\setminus\{0\}$.
- (b) similarly, f has a double pole at the origin, and

$$\begin{aligned} \operatorname{Res} f(z) &= \lim_{z \to 0} \frac{d}{dz} \left(\frac{1 - e^{z}}{z^{3}} \cdot z^{2} \right) &= \lim_{z \to 0} \frac{d}{dz} \frac{1 - e^{z}}{z^{2}} \\ &= \lim_{z \to 0} \frac{-e^{z} \cdot z - (1 - e^{z})}{z^{2}} = \lim_{z \to 0} \frac{-ze^{z} + e^{z} - 1}{z^{2}} \\ &= \lim_{z \to 0} \frac{-e^{z} - ze^{z} + e^{z}}{z^{2}} = \lim_{z \to 0} \frac{-e^{z}}{z^{2}} = -\frac{1}{2} \end{aligned}$$

$$\frac{OR}{E^{3}} = \frac{1-(1+2+\frac{2^{2}}{2!}+\frac{2^{3}}{3!}+\cdots)}{7^{3}}$$

$$= -\frac{1}{2^2} - \frac{1}{2^2} - \frac{1}{6} - \cdots$$

=) Res
$$f(q) = -\frac{1}{2}$$
.
 $t=0$

10

Question 3. Show that
$$\int_0^{2\pi} \frac{d\theta}{(5-3\sin\theta)^2} = \frac{5\pi}{32}.$$

Answer 3.

٠

Put
$$z=e^{i\theta}$$
, then $dz=ie^{i\theta}d\theta \Rightarrow d\theta = \frac{dz}{ie^{i\theta}} = \frac{dz}{iz}$, and
 $\frac{1}{2i}(z-\frac{1}{2}) = \frac{1}{2i}(\cos\theta + i\sin\theta - (\cos\theta - i\sin\theta)) = \sin\theta \Rightarrow \sin\theta = \frac{z^2-1}{2iz}$

Then

$$I = \frac{2\pi}{5 \frac{d\theta}{(5-3\sin\theta)^2}} = \frac{3\pi}{12l=1} \frac{d^2}{(5-3(2^2-1))^2} \frac{d^2}{12l}$$

$$= \oint \frac{4iz}{(3z^2 - 10iz - 3)^2} dz = \oint \frac{4iz}{(3(z - \frac{1}{3})(z - 3i))^2} dz$$

$$|z| = 1 \frac{[3(z - \frac{1}{3})(z - 3i)]^2}{(z - 3i)^2} dz$$

$$= 2\pi i \operatorname{Res}_{2=\frac{1}{3}} \frac{4i2}{3(2-\frac{1}{3})(2-3i)}^{2}$$

$$= 2\pi i \lim_{\substack{z \to \frac{1}{3} \\ z \to \frac{1}{3}}} \frac{d}{dz} \frac{4iz}{(3(z-3i))^2}$$

= $2\pi i \lim_{\substack{z \to \frac{1}{3} \\ z \to \frac{1}{3}}} \frac{4i(3(z-3i))^2}{(3(z-3i))^4}$

$$= 2\pi i \left[\frac{4i}{(3(\frac{1}{3} - 3i))^2} - \frac{6 \cdot 4i \cdot \frac{1}{3}}{(3(\frac{1}{3} - 3i))^3} \right] = 2\pi i \left(-\frac{1}{16}i + \frac{1}{64i} \right)$$

$$=\frac{\pi}{8}+\frac{\pi}{32}=\frac{5\pi}{32}$$

Question 4. Choose one of the integrals below and evaluate. If you evaluate more than one integral, 10 more points will be given for each extra solution.

(a)
$$\int_{0}^{\infty} \frac{x^{\frac{1}{2}}}{(1+z)^{2}} dx$$
.
(b) P.V. $\int_{-\infty}^{\infty} \frac{x^{2}}{x^{2}+1} dx$.
(c) P.V. $\int_{-\infty}^{\infty} \frac{x\sin \pi x}{x^{2}+2x+5} dx$.
Answer 4. countidue the branch of $z^{\frac{1}{2}}$ defined on.
(a) $(1+z)^{\frac{1}{2}} \frac{x^{\frac{1}{2}}}{x^{\frac{1}{2}}+2x+5} dx$.
(a) $(1+z)^{\frac{1}{2}} \frac{x^{\frac{1}{2}}}{x^{\frac{1}{2}}+2x+5} dx$.
(b) P.V. $\int_{-\infty}^{\infty} \frac{x^{\frac{1}{2}}+2x+5}{x^{\frac{1}{2}}+2x+5} dx$.
(c) $(1+z)^{\frac{1}{2}} \frac{x^{\frac{1}{2}}}{x^{\frac{1}{2}}} = |z|^{\frac{1}{2}} e^{\frac{1}{2}} arg z}$, $o (arg z \leq 2\pi)$.
(a) $(1+z)^{\frac{1}{2}} \frac{x^{\frac{1}{2}}}{x^{\frac{1}{2}}} and the contour $\frac{1}{2}e^{\frac{1}{2}} \log 2(2\pi)$.
(c) $(1+z)^{\frac{1}{2}} \frac{x^{\frac{1}{2}}}{x^{\frac{1}{2}}} = |z|^{\frac{1}{2}} e^{\frac{1}{2}} arg z}$, $o (arg z \leq 2\pi)$.
(c) $(1+z)^{\frac{1}{2}} \frac{x^{\frac{1}{2}}}{x^{\frac{1}{2}}} and the contour $\frac{1}{2}e^{\frac{1}{2}} \log 2(2\pi)$.
(b) $(1+z)^{\frac{1}{2}} \frac{x^{\frac{1}{2}}}{x^{\frac{1}{2}}} = \frac{x^{\frac{1}{2}}}{x^{\frac{1}{2}}} \frac{x^{\frac{1}{2}}}{x^{\frac{1}{2}}} dx + \int_{\mathbb{C}} \frac{z^{\frac{1}{2}}}{x^{\frac{1}{2}}} dx + \int_{\mathbb{C}} \frac{x^{\frac{1}{2}}}{x^{\frac{1}{2}}} dx$.
Then $\int_{0}^{\frac{1}{2}} \frac{x^{\frac{1}{2}}}{x^{\frac{1}{2}}} dz = xi \cdot \frac{1}{2} \frac{z^{\frac{1}{2}}}{x^{\frac{1}{2}}} |z|^{\frac{1}{2}} - 1|^{\frac{1}{2}} \frac{x^{\frac{1}{2}}}{x^{\frac{1}{2}}} \frac{x^{\frac{1}{2}}}{x^{\frac{1}{2}}} dx$.
(b) $deg(z^{1}) + 2 \leq deg(x^{\frac{1}{2}})$ and $x^{\frac{1}{2}} - 1|^{\frac{1}{2}} \frac{x^{\frac{1}{2}}}{x^{\frac{1}{2}}} \frac{x^{\frac{1}{2}}}{x$$$

2πi

 $\frac{i\pi(-1+2i)}{4i} = 2\pi \operatorname{Re}\left(\frac{1-2i}{4i}\right) = -\pi e^{-i\pi}$

= 2 x Re

Question 5.

(a) Prove that all the roots of

 $z^{7} - 5z^{3} + 12 = 0$ lie between the circles |z| = 1 and |z| = 2. (10 points) (b) Let $f(z) = \frac{(z^{2} + 1)^{2}}{(z^{2} + 2z + 2)^{3}}$. Evaluate $\frac{1}{2\pi i} \oint_{C} \frac{f'(z)}{f(z)} dz$

where C is the circle |z| = 4.

Answer 5.

(a)
On
$$C_1$$
, let $f_1 = 12$, $f_2 = z^7 - 5z^3$
Clearly $|f_1| = 12$ on C_1 and $|f_2| \leq |t+5| = 6$ on C_1 .
 $f_1 = 2$ and $z_{f_1} = z_{f_1+f_2} = 0$ inside and on C_1 .
(That is, $z^7 - 5z^3 + 12$ has no zeros inside and on C_1 .
On C_2 , let $f_1 = z^7$, $f_2 = -5z^3 + 12$. Has no zeros inside and on C_2 .
 $|f_2| \leq 5.8 + 12 = 52$ on C_2 . So $z_{f_1} = z_{f_1+f_2} = 7$ inside and on C_2 .
Since $z^7 - 5z^3 + 12$ has 7 zeros, all of them lie between
the circles $|t| = 1$ and $|z| = 2$.

(b)

$$f(z) = \frac{(z-i)^2(z+i)^2}{(z+1-i)^3(z+1+i)^3}$$

 $f(z) = \frac{(z-i)^2(z+i)^2}{(z+1-i)^3(z+1+i)^3}$
 $f(z) = \frac{(z-i)^2(z+i)^2}{(z+i-i)^3(z+1+i)^3}$
 $f(z) = \frac{(z-i)^2(z+i)^2}{(z+i-i)^3(z+i+i)^3}$
 $f(z) = \frac{(z-i)^2(z+i)^2(z+i)^2}{(z+i-i)^3(z+i+i)^3}$
 $f(z) = \frac{(z-i)^2(z+i)^2(z+i)^2}{(z+i-i)^3(z+i+i)^3(z+i+i)^3}$
 $f(z) = \frac{(z-i)^2(z+i)^2(z+i)^2}{(z+i-i)^3(z+i)^2$

$$\frac{1}{2\pi i} \int_{C} \frac{f'(t)}{f(t)} dt = \frac{1}{2} - \frac{1}{2} = 4 - 6 = -2.$$

(10 points)

MATH 352 Complex Analysis II

2nd Midterm May 17, 2007 11:40-13:30

-

- The exam consists of 5 questions of equal weight.
- Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- \bullet Show all your work. Correct answers without sufficient explanation might <u>not</u> get full credit.
- $\bullet\,$ Calculators are <u>not</u> allowed.

GOOD LUCK!

Please do $\underline{\text{not}}$ write below this line.

Q1	Q2	Q3	Q4	Q5	TOTAL
20	20	20	20	20	100

Question 1. Show that
$$\sum_{n=1}^{\infty} \frac{1}{n!} = \frac{\pi^{4}}{90}$$
. (20 points)
Answer 1.
Let $f(z) = \frac{1}{2^{\frac{1}{4}}} \cot \pi z$ and $L_{\pi}:$
 $= \frac{1}{2^{\frac{1}{4}}} \frac{\cos \pi z}{\sin \pi z}$ $-(n+\frac{1}{2})$
 $= \frac{1}{2^{-\frac{1}{4}}} \frac{\cos \pi z}{\sin \pi z}$ $-(n+\frac{1}{2})$
We have proved in class that $\exists C \gamma_{0}$ (not depending on n) such that
 $|\cot x_{2}|(C)$ for all $z \in L_{n}$. Therefore
 $|\int_{L_{n}} f(z)dz| \leq \frac{C}{(n+\frac{1}{2})^{\frac{1}{4}}} \frac{4(2n+1)}{2} \rightarrow 0$ as $n \rightarrow \infty$.
 f has a pole of order 5 at $z=0$ and simple poles at
 $-n \leq k \leq n$, $k \neq 0$. Thus,
 $\frac{2\pi k}{2\pi k} = \frac{2\pi k}{2\pi k} \frac{1}{2^{\frac{1}{4}}} \frac{\cos \pi z}{\cos \pi z}$ $(z \cdot k) = \frac{\cos \pi k}{k^{\frac{1}{4}}} \lim_{z \to k} \frac{2 - k}{\sin \pi^{\frac{1}{2}}}$
 $= \frac{\cos \pi k}{k^{\frac{1}{4}}} \lim_{z \to k} \frac{1}{\pi^{\frac{1}{2}}} \frac{\cos \pi z}{\pi x} (z \cdot k) = \frac{\cos \pi k}{k^{\frac{1}{4}}} \lim_{z \to k} \frac{2 - k}{\sin \pi^{\frac{1}{2}}}$
To find the residue at $2\pi c$, use can use the series
division $\frac{1}{2^{\frac{1}{4}}} \frac{\cos \pi z}{\sin \pi z} = \frac{1}{2^{\frac{1}{4}}} \frac{1 - \frac{\pi^{\frac{1}{4}} 2}{\frac{\pi^{\frac{1}{4}}}{2}} + \frac{\pi^{\frac{1}{4}} 2}{\pi^{\frac{1}{4}}} + \frac{\pi^{\frac{1}{4}} 2}$

Question 2. Evaluate $\oint_{|z|=\frac{37}{2}} \frac{z^{19} \sin \frac{1}{z}}{(z-1)(z-2)(z-3)\cdots(z-19)} dz.$ (20 points)

Answer 2.

$$I = \oint_{\substack{|z|=\frac{37}{2}}} \frac{2^{19} \sin \frac{1}{2}}{(z_{-1})(z_{-2})\cdots(z_{-19})} dz = 2\pi i \left(\sum_{k=0}^{18} \operatorname{Res} f(z)\right)$$
$$= -2\pi i \left(\operatorname{Res} f(z) + \operatorname{Res} f(z)\right)$$
$$= -2\pi i \left(\operatorname{Res} f(z) + \operatorname{Res} f(z)\right).$$

f has a simple pole at
$$z = 19$$
, and
 $les f(z) = \lim_{z \to 19} \frac{z^{19} \sin \frac{1}{z}}{(z - 1) \cdots (z - 19)} = \frac{19^{19} \sin \frac{1}{19}}{18.17 \cdots 1}$
 $= \frac{19^{19} \sin \frac{1}{19}}{18!}$
Note that $\lim_{z \to \infty} \frac{z^{19} \sin \frac{1}{z}}{(z - 1)(z - 2) \cdots (z - 19)} = \lim_{z \to \infty} \frac{\sin \frac{1}{z}}{z - 1} = 0$

and so
Res
$$f(z) = -\lim_{z \to \infty} z f(z) = -\lim_{z \to \infty} \frac{z^{20} \sin \frac{1}{z}}{(z-1) \dots (z-19)}$$

 $= -\lim_{z \to \infty} \frac{\sin \frac{1}{z}}{\frac{1}{z}} = -1$
Therefore, $J = -2\pi i \left(\frac{19^{19} \sin \frac{1}{19}}{18!} - 1 \right)$

Question 3. Find the inverse Laplace transform of $F(s) = \frac{5s - 7}{s^3 - 2s^2 - s + 2}$. (20 points) Answer 3.

One can easily show that

$$s^{3}-2s^{2}-s+2 = (s-1)(s-2)(s+1)$$

Let $F(s) = \frac{5s-7}{s^{3}-2s^{2}-s+2}$ Let C_{R} be the
circular part of the contour shown below
 C_{R} ($F(s) = \frac{5s-7}{(1s-1)(1s-2)(1s-1)}$
 $= \frac{5(P+R) + 7}{(R-Y-1)(R-Y-2)(P-Y-1)}$
Thus, $f(t) = Res \frac{5s-7}{s^{2}-2s^{2}-s+2} = e^{5t} + Res \frac{5s-7}{s-2} = e^{5t}$
 $= A + B + C$.
Clearly, $A = \lim_{s \to 1} \frac{5s-7}{(s-2)(s+1)} = e^{st} = \frac{-2e^{t}}{(-1)(2)} = e^{t}$,
 $B = \lim_{s \to 2} \frac{5s-7}{(s-1)(s+1)} = e^{st} = \frac{-2e^{t}}{(-2)(-3)} = -2e^{t}$
 $C = \lim_{s \to -1} \frac{5s-7}{(s-1)(s-2)} = e^{st} = \frac{-12e^{-t}}{(-2)(-3)} = -2e^{t}$,
and so $f(t) = e^{t} + e^{2t} - 2e^{t}$.

Question 4. Find the bilinear transformation w = f(z) that maps

- (a) the half plane $\{z : \operatorname{Re} z > -3\}$ onto the disk $\{w : |w-2| < 2\}$ in such a way that f(-3) = 0 and f(0) = 1. (10 points)
- (b) the upper half plane $\{z : \text{Im } z > 0\}$ onto the unit disk $\{w : |w| < 1\}$ in such a way that f(i) = 0 and $f'(i) = \frac{1}{2}$. (10 points)

By symmetry, -6 is mapped onto -2 (-6 is symmetric to 0 with respect to the line Rez=-3, So the image of -6 should be symmetric to the image of 0, which is 1 with respect to the circle $1\omega-21=2$, and clearly, 1 and -2 are symmetric with respect to the circle $1\omega-21=2$.)

Thus, -3,0,-6 are mapped onto 0,1,-2 respectively, Then, a formula seen in class gives the desired bilinear map

$$\frac{z+3}{z+6} \cdot \frac{6}{3} = \frac{\omega}{\omega+2} \cdot \frac{3}{1} = 7$$

$$(2z+6)(\omega+2) = (2+6)3\omega \Rightarrow \omega = \frac{4z+12}{z+12}.$$

(b) The general form of the bilinear map which maps the upper half plane onto the unit disk $f(z) = e \frac{z-\alpha}{z-\overline{z}}$

So $\alpha = i$, we will use the second condition to find γ . $f'(z) = e^{i\gamma} (z+i) - (z-i) = f'(i) = \frac{e^{\gamma}}{2i} = \frac{1}{2} = \frac$

$$f(z) = i \frac{z-i}{z+i} = \frac{iz+i}{z+i}$$

Question 5. Map the region $G = \{z : |z-2| < 2\} \setminus \{z : |z-1| \le 1\}$, which is shown below, onto the unit disk.

MATH 352 Complex Analysis II

Final May 21, 2007 11:30-13:30

Surname	:	
-		
Signature	:	

- The exam consists of 5 questions of equal weight.
- Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- \bullet Show all your work. Correct answers without sufficient explanation might <u>not</u> get full credit.
- Calculators are <u>not</u> allowed.

GOOD LUCK!

Please do \underline{not} write below this line.

Q1	Q2	Q3	Q4	Q5	TOTAL
20	20	20	20	20	100

Question 1. Find and classify all the singularities of the functions below, including the singularity at infinity and find the corresponding residues.

(a) $e^{\frac{1}{z-2}}$.	(6 points)
(b) $\frac{3z^3}{z(z-2)(z^2+1)}$.	(8 points)
(c) $\frac{\sin z}{z^3}$.	(6 points)

Answer 1.

,

(a) Since
$$e^{\frac{1}{2}-2} = 1 + \frac{1}{2-2} + \frac{1}{2!(2-2)^2} + \cdots$$
, $12-21>0$
and $\lim_{2 \to \infty} e^{\frac{1}{2}-2} = 1$, f has an essential singularity
at 2 and a removable singularity at ∞ . f has
no other singularities. Clearly, Res $e^{\frac{1}{2}-2} = 1$ and so
 $e^{\frac{1}{2}+2} = -1$.
(b) f has simple poles at $2, i, -i$ and
removable singularity at ∞ (Because $\lim_{2 \to \infty} f(z) = 2ists$)
And, Res $f(z) = \lim_{2 \to 1} \frac{3z^2}{2^2+1} = \frac{12}{5}$
 $Res f(z) = \lim_{2 \to -i} \frac{3z^2}{(2-2)(z+i)} = \frac{-3}{(i-2)2i} = \frac{3-6i}{10}$.
 $Res f(z) = \lim_{2 \to -i} \frac{3z^2}{(2-2)(z+i)} = \frac{-3}{(i-2)(-2i)} = \frac{3+6i}{10}$
 $Res f(z) = -(\frac{12}{5} + \frac{3-6i}{10} + \frac{3+6i}{10}) = -3$
(c) $\frac{\sin 2}{2^3} = \frac{2-\frac{23}{3!} + \frac{25}{5!} - \frac{27}{7!} + \cdots$
 z^3
 $= \frac{1}{2^2} - \frac{1}{3!} + \frac{2^2}{5!} - \cdots$, $121>0$

at the infinity with residue D

Question 2. Evaluate
$$\int_{0}^{2\pi} \frac{d\theta}{2+\cos\theta}$$
. (20 points)
Answer 2.
Put $2 = e^{i\theta}$, then $d\theta = \frac{d\tau}{i\tau}$ and $\cos\theta = \frac{\tau^{2}+1}{2\tau^{2}}$.
Horeover
 $I = \int_{0}^{2\pi} \frac{d\theta}{2+\cos\theta} = \int_{|\tau|=1}^{1} \frac{1}{2+\frac{\tau^{2}+1}{2\tau}} \frac{d\tau}{i\tau}$
 $= \frac{2}{i} \int_{|\tau|=1}^{2\pi} \frac{d\tau}{\tau^{2}+4\tau^{2}+1}$
 $= \frac{2}{i} - 2\pi i$ Res $\frac{1}{\tau^{2}+4\tau^{2}+1}$
 $= 4\pi \lim_{\tau \to -2+\sqrt{3}} \frac{1}{\tau^{2}+2+\sqrt{3}}$
 $= 4\pi \frac{1}{2\sqrt{3}} = \frac{2\pi}{\sqrt{3}}$.

.

,

Question 3. Map the region

 $G = \mathbb{C} \setminus (\{z : \operatorname{Re} z = 0, -2 \le \operatorname{Im} z \le 2\} \cup \{z : -2 \le \operatorname{Re} z \le 2, \operatorname{Im} z = 0\})$ shown in the figure below onto the upper half plane. (20 points)

(For the last map: $w = \frac{z-i}{z+i}$ map the upper half plane onto the unit disk, so the inverse of this map maps the unit disk onto the upper half plane: w(z+i)=z-i = zw+iw=z-i=7 $z(w-i)=-i-iw \Rightarrow z=\frac{iw+i}{1-w}$.)

Question 4.

٠

(a) Evaluate P.V.
$$\int_{-\infty}^{\infty} \frac{x}{x^3 + 1} dx.$$
 (10 points)
(b) Evaluate
$$\oint_{|z|=3} \frac{z^3(1-3z)}{(1+z)(1+2z^4)} dz.$$
 (10 points)

Answer 4.

(a)
$$x^{3}+1 = (x - x_{1})(x - x_{2})(x - x_{3})$$
 where $x_{1} = -1$ (on the yeal axis)
 $x_{2} = \frac{1 - \sqrt{3}i}{2}$
 $x_{3} = \frac{1 + \sqrt{3}i}{2}$ (on the upper half glame)

Since

P.V.
$$\int_{-\infty}^{\infty} \frac{x}{x^{3}+1} dx = 2\pi i$$
 Res $\frac{2}{2^{3}+1} + \pi i$ Res $\frac{2}{2^{3}+1} = \frac{1+\sqrt{3}i}{2}$

deg (x 3+1) > deg (x)+2 ,

$$= 2\pi i \lim_{z \to 1} \frac{2}{(2+i)(2-\frac{1}{2}+i\sqrt{3})} + \pi i \lim_{z \to -1} \frac{2}{2^2} + i \frac{2}{2} + i \frac{1}{2} + \frac{1}{$$

All singularities are inside the contour, thus we can use single residue theorem

=
$$2\pi i Res \frac{Z-3}{Z=0} = \frac{Z-3}{Z(2+1)(2^{4}+2)}$$

$$= 2\pi i \frac{-3}{1\cdot 2} = -3\pi i$$

Question 5. Use the Schwarz-Christoffel formula to show that the function $w = f(z) = \log z$ maps the upper half plane $\{z : \operatorname{Im} z > 0\}$ onto the infinite strip $\{w : 0 < \operatorname{Im} w < \pi\}$. *Hint*: Set $x_1 = -1, x_2 = 0, w_1 = i\pi$, and $w_2 = -d$ and let $d \to \infty$. The figure below may help. (20 points)

e

MATH 352 Complex Analysis II

Make up for the 1^{st} Midterm June 13, 2007 15:00-17:00

Surname	:	
-		
Signature	:	

- The exam consists of 5 questions of equal weight.
- Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- \bullet Show all your work. Correct answers without sufficient explanation might <u>not</u> get full credit.
- Calculators are \underline{not} allowed.

GOOD LUCK!

Please do \underline{not} write below this line.

Q1	Q2	Q3	Q4	Q5	TOTAL
20	20	20	20	20	100

Question 1. Expand $f(z) = \frac{z+1}{z^3(z^2+1)}$ in a Laurent series valid for	
(a) $0 < z < 1$.	(5 points)
(b) $1 < z < \infty$. (c) $0 < z - i < 1$.	(5 points) (5 points)
(d) $1 < z - i < 2.$	(5 points)

Answer 1.

Question 2. Let $f(z) = \frac{z^2 - 2z}{(z+1)^2(z^2-4)}$.

- (a) Locate the zeros of f and determine the order of each zero.
- (5 points)(b) Locate the poles of f and determine the order of each pole, and find the corresponding residue. (15 points)

Answer 2.

Question 3. Show that
$$\int_{0}^{2\pi} \frac{\cos 3\theta}{5 - 4\cos \theta} d\theta = \frac{\pi}{12}$$
.

Answer 3.

Question 4. Choose one of the integrals below and evaluate. If you evaluate more than one integral, 10 more points will be given for each extra solution.

(20 points)

(a)
$$\int_0^\infty \frac{x^{\frac{1}{3}}}{(1+x)^2} dx.$$

(b) $\int_0^\infty \frac{dx}{(x^2+1)^2}.$
(c) $\int_0^\infty \frac{\sin 2x}{x(x^2+5)} dx.$

Answer 4.

Question 5.

- (a) Determine the number of roots of the equation $z^8 z^3 + z + 18 = 0$ on
 - (i) |z| < 1, (ii) $1 \le |z| < 2$. (4 points) (4 points)
 - $\begin{array}{c} (1) & 1 \leq |z| < 2. \\ (ii) & |z| \geq 2. \end{array} \tag{1 points} \\ (2 \text{ points}) \end{array}$
- (b) Let C denote the unit circle |z| = 1, described in the positive sense. Determine the value of $\triangle_C \arg f(z)$ when

(i)
$$f(z) = \frac{z^3 + 2}{(2^2 - 1)^7}$$
. (5 points)

(ii)
$$f(z) = \frac{(2z-1)^7}{z^3}$$
. (5 points)

Answer 5.

MATH 352 Complex Analysis II

Make up for the 1^{st} and 2^{nd} Midterms June 13, 2007 15:00-17:00

Surname	:	
Name	:	
-		
Signature	:	

- The exam consists of 5 questions of equal weight.
- Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- \bullet Show all your work. Correct answers without sufficient explanation might <u>not</u> get full credit.
- Calculators are <u>not</u> allowed.

GOOD LUCK!

Please do $\underline{\text{not}}$ write below this line.

Q1	Q2	Q3	Q4	Q5	TOTAL
20	20	20	20	20	100

Question 1. Choose one of the integrals below and evaluate. If you solve two of them, 20 more points will be given.

(a)
$$\int_0^\infty \frac{x^{\frac{1}{3}}}{(1+x)^2} dx.$$

(b) $\int_0^\infty \frac{\sin 2x}{x(x^2+5)} dx.$

Answer 1.

Question 2.

- (a) Determine the number of roots of the equation $z^8 z^3 + z + 18 = 0$ on
 - (i) |z| < 1, (ii) $1 \le |z| < 2$. (4 points) (4 points)
 - $\begin{array}{c} (1) & |z| \geq 2. \end{array} \tag{1 points} \\ (2 & \text{points}) \end{array}$
- (b) Let C denote the unit circle |z| = 1, described in the positive sense. Determine the value of $\triangle_C \arg f(z)$ when

(i)
$$f(z) = \frac{z^3 + 2}{(2^2 - 1)^7}$$
. (5 points)

(ii)
$$f(z) = \frac{(2z-1)^7}{z^3}$$
. (5 points)

Answer 2.

Question 3. Find the inverse Laplace transform of $F(s) = \frac{s+3}{(s-2)(s^2+1)}$. (20 points)

Answer 3.

Question 4. Find the bilinear transformation w = f(z) that maps

- (a) the half plane $\{z : \operatorname{Re} z > -3\}$ onto the disk $\{w : |w-2| < 2\}$ in such a way that f(-3) = 0 and f(0) = 1. (10 points)
- (b) the upper half plane $\{z : \text{Im } z > 0\}$ onto the unit disk $\{w : |w| < 1\}$ in such a way that f(i) = 0 and $f'(i) = \frac{1}{2}$. (10 points)

Answer 4.

Question 5. Expand $f(z) = \frac{z+1}{z^3(z^2+1)}$ in a Laurent series valid for	
(a) $0 < z < 1$.	(5 points)
(b) $1 < z < \infty$.	(5 points)
(c) $0 < z - i < 1$.	(5 points)
(d) $1 < z - i < 2.$	(5 points)

Answer 5.

MATH 352 Complex Analysis II

 $\begin{array}{c} \mbox{Make up for the Final} \\ \mbox{June 13, 2007} \\ \mbox{15:00-17:00} \end{array}$

Surname	:	
-		
Signature	:	

- The exam consists of 5 questions of equal weight.
- Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- \bullet Show all your work. Correct answers without sufficient explanation might <u>not</u> get full credit.
- $\bullet\,$ Calculators are $\underline{\mathrm{not}}$ allowed.

GOOD LUCK!

Please do $\underline{\text{not}}$ write below this line.

Q1	Q2	Q3	Q4	Q5	TOTAL
20	20	20	20	20	100

Question 1. Let $f(z) = \frac{z^2 - 2z}{(z+1)^2(z^2-4)}$.

- (a) Find the zeros of f and determine the order of each zero. (5 points)
- (b) Find and classify the isolated singularities of f (including the singularity at infinity), and the corresponding residues. (15 points)

Answer 1.

Question 2. Evaluate $\int_0^{2\pi} \frac{d\theta}{2+\cos\theta}$.

(20 points)

Answer 2.

Question 3. Map the region

$$G = \{z \in \mathbb{C}: \ |z| > 1\} \backslash \{z \in \mathbb{C}: \ -2 \le \operatorname{Re} z \le 2, \ \operatorname{Im} z = 0\}$$

shown in the figure below onto the upper half plane.

(20 points)

Answer 3.

Question 4.

(a) Evaluate
$$\int_0^\infty \frac{dx}{(x^2+1)^2}.$$

(b) Evaluate
$$\oint_{|z|=3} \frac{(3z+2)^2}{z(z-1)(2z+5)} dz.$$

(10 points)

(10 points)

Answer 4.

Question 5. Use the Schwarz-Christoffel formula to show that the function w = f(z) = Log zmaps the upper half plane $\{z : \text{Im } z > 0\}$ onto the infinite strip $\{w : 0 < \text{Im } w < \pi\}$. *Hint*: Set $x_1 = -1, x_2 = 0, w_1 = i\pi$, and $w_2 = -d$ and let $d \to \infty$. The figure below may help. (20 points)

Answer 5.