# ÇANKAYA UNIVERSITY <br> Department of Mathematics and Computer Science 

MATH 351 Complex Analysis I<br>Final Exam<br>SOLUTIONS<br>August 8, 2008<br>9:00-11:00



- The exam consists of 6 questions.
- Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- Show all your work. Correct answers without sufficient explanation might not get full credit.
- Calculators are not allowed.
GOOD LUCK!

Please do not write below this line.

| Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | TOTAL |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| 14 | 16 | 16 | 24 | 20 | 15 | 105 |

1. 

a) Express $2 e^{i \pi / 4}$ in the standard form $a+i b$.
b) Express $\left(\frac{1-i}{\sqrt{3}+i}\right)^{8}$ in polar form $r e^{i \theta}$.

## Solution:

a)

$$
2 e^{i \pi / 4}=2\left(\cos \left(\frac{\pi}{4}\right)+i \sin \left(\frac{\pi}{4}\right)\right)=2\left(\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)=\sqrt{2}+i \sqrt{2} .
$$

b)

$$
\left(\frac{1-i}{\sqrt{3}+i}\right)^{8}=\left(\frac{\sqrt{2} e^{-i \pi / 4}}{2 e^{i \pi / 6}}\right)^{8}=\left(\frac{1}{\sqrt{2}}\right)^{8}\left(e^{-i 5 \pi / 12}\right)^{8}=\frac{1}{16} e^{-i 10 \pi / 3}=\frac{1}{16} e^{i 2 \pi / 3}
$$

2. 

a) For what values of $x, y$ is the function $f(x+i y)=x y+i x$ is differentiable? analytic?
b) Find a function analytic in the entire plane whose real part is $u(x, y)=x^{3} y-x y^{3}$.

## Solution:

a)

$$
\begin{aligned}
& u_{x}=y, \quad u_{y}=x \\
& v_{x}=1, \quad v_{y}=0
\end{aligned}
$$

Thus, by Cauchy-Riemann equations, if $f$ is differentiable at $x+i y$, then $x=-1, y=0$. Since all partial derivatives are continuous, $f$ is indeed differentiable at $x=-1, y=0$.
Since $f$ is not differentiable in a neighborhood of this point, $f$ is nowhere analytic.
b) Find harmonic conjugate $v$ of $u$ :

Since $v_{y}=u_{x}=3 x^{2} y-y^{3}$,

$$
v=\int\left(3 x^{2} y-y^{3}\right) d y=(3 / 2) x^{2} y^{2}-y^{4} / 4+h(x)
$$

where $h(x)$ can be determined from the equations:

$$
v_{x}=3 x y^{2}+h^{\prime}(x), \quad v_{x}=-u_{y}=-x^{3}+3 x y^{2}
$$

thus, $h^{\prime}(x)=-x^{3}$ and so $h(x)=-x^{4} / 4+C$, where $C$ is a constant.
It follows that

$$
v=(3 / 2) x^{2} y^{2}-y^{4} / 4-x^{4} / 4+C,
$$

is a harmonic conjugate for $u$ and that $f(x, y)=u+i v=\left(x^{3} y-x y^{3}\right)+i\left((3 / 2) x^{2} y^{2}-y^{4} / 4-x^{4} / 4+C\right)$ is an analytic function whose real part is $u(x, y)=x^{3} y-x y^{3}$.
3.
a) Let $C$ be the unit circle traversed clockwise. Find the value of $\int_{C} z \sin z^{2} d z$ without explicitly calculating the integral.
b) Let $C$ be the circle of radius 1 centered at $2+i$ traversed counterclockwise. Find the value of $\int_{C} \frac{1}{z} d z$ without explicitly calculating the integral.

## Solution:

a) We know that $f(z)=z \sin z^{2}$ is everywhere analytic so in particular, inside and on $C$, therefore by Cauchy-Goursat theorem, $\int_{C} z \sin z^{2}=0$.
b) The function $f(z)=\frac{1}{z}$ has one isolated singular point namely, $z=0$, and it is analytic everywhere else, but $z=0$ is outside the contour $C$, therefore by Cauchy-Goursat theorem, $\underline{\int_{C}} \frac{1}{z} d z=0$.
4. Evaluate the following integrals:
(a) $\int_{|z-1|=1} \frac{z}{z^{2}-1} d z$,
(b) $\int_{|z|=2} \frac{z e^{z}}{(z-1)^{3}} d z$,
(c) $\int_{|z|=1} \frac{z \sin z}{(z-2)^{3}} d z$

Solution:
a) Let $f(z)=\frac{z}{z+1}$. Then $f(z)$ is analytic inside and on $C$. Therefore, by the Cauchy Integral Formula, we have $\int_{|z-1|=1} \frac{z}{z^{2}-1} d z=\int_{|z-1|=1} \frac{f(z)}{z-1} d z=2 \pi i f(1)=2 \pi i\left[\frac{z}{z+1}\right]_{z=1}=$ $2 \pi i \frac{1}{1+1}=\pi i$.
b) Let $g(z)=z e^{z}$. Then $g(z)$ is analytic inside and on $C$. Hence, by the Cauchy Integral

Formula, we have $\int_{|z|=2} \frac{z e^{z}}{(z-1)^{3}} d z=\frac{2 \pi i}{2!} g^{\prime \prime}(1)=\pi i\left[2 e^{z}+z e^{z}\right]_{z=1}=\pi i\left[2 e^{1}+e^{1}\right]=3 \pi i e$.
c) $\int_{|z|=1} \frac{z \sin z}{(z-2)^{3}} d z=0$, by the Cauchy-Goursat theorem since the integrand $\frac{z \sin z}{(z-2)^{3}}$ is analytic at all points in the interior and on $C$.
5. Evaluate the following contour integrals
a) $\int_{C}\left(z+z^{2}\right) d z$ where $C$ is the straight line segment from $z=1$ to $z=i$.
b) $\int_{C} \sqrt{z} d z$ where $C$ is the segment of the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ from $z=3$ to $z=2 i$. (use the principal branch of $\sqrt{z}$ ).

## Solution:

a)
$f(z)=z+z^{2}$ has antiderivative $F(z)=\frac{1}{2} z^{2}+\frac{1}{3} z^{3}$ in $\mathbb{C}$. Therefore,

$$
\int_{C} f(z) d z=\left[\frac{1}{2} z^{2}+\frac{1}{3} z^{3}\right]_{1}^{i}=-\frac{1}{2}-\frac{i}{3}-\left(\frac{1}{2}+\frac{1}{3}\right)=-\frac{4}{3}-\frac{i}{3}
$$

b)
$f(z)=\sqrt{z}$ (principal branch) has antiderivative $F(z)=\frac{2}{3} z^{3 / 2}$ (principal branch). Therefore,

$$
\begin{aligned}
\int_{C} f(z) d z & =\left[\frac{2}{3} z^{3 / 2}\right]_{3}^{2 i}=\frac{2}{3}\left((2 i)^{3 / 2}-3^{3 / 2}\right) \\
& =\frac{2}{3}\left(2^{3 / 2} e^{i 3 \pi / 4}-3^{3 / 2}\right) \\
& =-\frac{4}{3}-2 \sqrt{3}+\frac{4}{3} i
\end{aligned}
$$

6. Find the Taylor series representation for $f(z)=\frac{z^{2}}{(2+z)^{2}}$, indicate its domain of convergence. Solution:
$f(z)=\frac{z^{2}}{(2+z)^{2}} ;$
We start with

$$
\frac{1}{2+z}=\frac{1}{2} \frac{1}{1-\left(-\frac{z}{2}\right)}=\frac{1}{2} \sum_{n=0}^{\infty}\left(-\frac{z}{2}\right)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}} z^{n} \text { for }\left|\frac{z}{2}\right|<1 \text { i.e., for }|z|<2
$$

Next we differentiate:

$$
\begin{aligned}
\frac{d}{d z}\left(\frac{1}{2+z}\right) & =\frac{d}{d z}\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}} z^{n}\right), \text { for }|z|<2 \\
-\frac{1}{(2+z)^{2}} & =\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2^{n+1}} n z^{n-1}, \text { for }|z|<2 \\
-\frac{1}{(2+z)^{2}} & =\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{2^{n+2}}(n+1) z^{n}, \text { for }|z|<2 \\
\frac{1}{(2+z)^{2}} & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+2}}(n+1) z^{n}, \text { for }|z|<2 \\
\frac{z^{2}}{(2+z)^{2}} & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+2}}(n+1) z^{n+2}, \text { for }|z|<2
\end{aligned}
$$

# ÇANKAYA UNIVERSITY <br> Department of Mathematics and Computer Science 

## MATH 351 Complex Analysis I

First Midterm
SOLUTIONS
July 14, 2008
9:00-10:30


- The exam consists of 6 questions.
- Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- Show all your work. Correct answers without sufficient explanation might not get full credit.
- Calculators are not allowed.
GOOD LUCK!

Please do not write below this line.

| Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | TOTAL |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| 11 | 18 | 20 | 20 | 16 | 20 | 105 |

1. Find all complex numbers $z$ that are complex conjugates of their own squares i.e., $\bar{z}=z^{2}$. Solution:
We need to solve the equation $\bar{z}=z^{2}$; that is, we need to find all pairs $(x, y)$ of real numbers such that $x-i y=x^{2}-y^{2}+i \cdot 2 x y$. Since 1 and $i$ are linearly independent, this means we need to solve the two equations

$$
\begin{aligned}
x & =x^{2}-y^{2} \\
-y & =2 x y
\end{aligned}
$$

for $x$ and $y$. For $y=0$, we get $x=0$ or $x=1$. For $y \neq 0$, we get $x=-\frac{1}{2}$ and $y= \pm \frac{1}{2}$. So there are four solutions, namely, $0,1,-\frac{1}{2}+i \frac{1}{2}, \frac{1}{2}-i \frac{1}{2}$.
2. Find all of the roots of $(-8 i)^{1 / 3}$ in the form $a+i b$ and point out which is the principal root. Solution:
Since $-8 i=8 \exp \left[i\left(-\frac{\pi}{2}+2 k \pi\right)\right](k=0,1,2)$, the three cube roots of the number $z_{0}=-8 i$ are

$$
(-8 i)^{1 / 3}=2 \exp \left[i\left(-\frac{\pi}{6}+\frac{2 k \pi}{3}\right)\right] \quad(k=0,1,2)
$$

the principal one being

$$
c_{0}=2 \exp \left(i \frac{-\pi}{6}\right)=2\left(\frac{\sqrt{3}}{2}-i \frac{1}{2}=\sqrt{3}-i\right)
$$

The others are

$$
c_{1}=2 \exp \left(i \frac{\pi}{2}\right)=2 i
$$

and

$$
c_{2}=2 \exp \left(i \frac{7 \pi}{6}\right)=2\left(-\frac{\sqrt{3}}{2}-i \frac{1}{2}\right)=-(\sqrt{3}+1) .
$$

3. Determine where $f^{\prime}(z)$ exists and find its value when
(a) $f(z)=\frac{1}{z}$;
(b) $f(z)=\tilde{x}^{2}+i y^{2}$.

## Solution:

(a) $f(z)=\frac{1}{z}=\frac{1}{z} \cdot \frac{\bar{z}}{\bar{z}}=\frac{\bar{z}}{|z|^{2}}=\frac{x}{x^{2}+y^{2}}+i \frac{-y}{x^{2}+y^{2}}$. So $u=\frac{x}{x^{2}+y^{2}} \quad$ and $\quad v=\frac{-y}{x^{2}+y^{2}}$.
Since

$$
u_{x}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}=v_{y} \quad \text { and } \quad u_{y}=\frac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}}=-v_{x} \quad x^{2}+y^{2} \neq 0
$$

$f^{\prime}(z)$ exists when $z \neq 0$. Moreover, when $z \neq 0$,

$$
\begin{aligned}
f^{\prime}(z) & =u_{x}+i v_{x}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}+i \frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}=-\frac{x^{2}-i 2 x y-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& =-\frac{(x-i y)^{2}}{\left(x^{2}+y^{2}\right)^{2}}=-\frac{(\bar{z})^{2}}{(z \bar{z})^{2}}=-\frac{(\bar{z})^{2}}{z^{2}(\bar{z})^{2}}=-\frac{1}{z^{2}} .
\end{aligned}
$$

(b)
$f(z)=x^{2}+i y^{2}$. Hence $u=x^{2}$ and $v=y^{2}$. Now

$$
u_{x}=v_{y} \Longrightarrow 2 x=2 y \Longrightarrow y=x \quad \text { and } \quad u_{y}=-v_{x} \Longrightarrow 0=0
$$

So $f^{\prime}(z)$ exists only when $y=x$, and we find that

$$
f^{\prime}(x+i x)=u_{x}(x, x)+i v_{x}(x, x)=2 x+i 0=2 x .
$$

4. Determine if the following functions are analytic
(a) $f(z)=3 x+y+i(3 y-x)$
(b) $f(z)=2 x y+i\left(x^{2}-y^{2}\right)$.

## Solution:

(a)
$f(z)=\underbrace{3 x+y}+i \underbrace{(3 y-x)}=u+i v$ where $u=3 x+y$ and $v=3 y-x$ is entire since

$$
u_{x}=3=v_{y} \quad \text { and } \quad u_{y}=1=-v_{x} .
$$

(b) $f(z)=\underbrace{2 x y}+i \underbrace{\left(x^{2}-y^{2}\right)}=u+i v$ where $u=2 x y$ and $v=x^{2}-y^{2}$ is nowhere analytic since $u_{x}=v_{y} \Longrightarrow 2 y=-2 y \Longrightarrow y=0 \quad$ and $\quad u_{y}=-v_{x} \Longrightarrow 2 x=-2 x \Longrightarrow x=0$,
which means that the Cauchy-Riemann equations hold only at the point $z=(0,0)=0$.
5. Show that $u(x, y)=2 x-x^{3}+3 x y^{2}$ is harmonic in some domain and find a harmonic conjugate $v(x, y)$.

## Solution:

It is straightforward to show that $u_{x x}+u_{y y}=0$. To find a harmonic conjugate $v(x, y)$, we start with $u_{x}(x, y)=2-3 x^{2}+3 y^{2}$. Now

$$
u_{x}=v_{y} \Longrightarrow v_{y}=2-3 x^{2}+3 y^{2} \Longrightarrow v(x, y)=2 y-3 x^{2} y+y^{3}+\phi(x)
$$

Then

$$
u_{y}=-v_{x} \Longrightarrow 6 x y=6 x y-\phi^{\prime}(x) \Longrightarrow \phi^{\prime}(x)=0 \Longrightarrow \phi(x)=c .
$$

Consquently,

$$
v(x, y)=2 y-3 x^{2} y+y^{3}+c .
$$

6. Find all values of $z$ such that $e^{z}=1+\sqrt{3} i$.

## Solution:

Write $e^{z}=1+\sqrt{3} i$ as $e^{x} e^{i y}=2 e^{i(\pi / 3)}$, from which we see that

$$
e^{x}=2 \quad \text { and } \quad y=\frac{\pi}{3}+2 n \pi \quad(n=0, \pm 1, \pm 2, \cdots) .
$$

That is,

$$
x=\ln 2 \quad \text { and } \quad y=\left(2 n+\frac{1}{3}\right) \pi \quad(n=0, \pm 1, \pm 2, \cdots) .
$$

Consequently

$$
z=\ln 2+\left(2 n+\frac{1}{3}\right) \pi i \quad(n=0, \pm 1, \pm 2, \cdots)
$$

# ÇANKAYA UNIVERSITY <br> Department of Mathematics and Computer Science 

## MATH 351 Complex Analysis I

Second Midterm
SOLUTIONS
August 4, 2008
9:00-10:30


- The exam consists of 6 questions.
- Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- Show all your work. Correct answers without sufficient explanation might not get full credit.
- Calculators are not allowed.


## GOOD LUCK!

Please do not write below this line.

| Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | TOTAL |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| 11 | 18 | 20 | 20 | 16 | 20 | 105 |

1. Find all the zeros of the function $f(z)=2+\cos z$. (Hint: if they exist, they must be nonreal.)

## Solution:

Following the hint, write $z=x+i y$ with real and imaginary parts $x, y \in \mathbb{R}$. But then

$$
\cos z=\cos (x+i y)=\cos x \cos i y-\sin x \sin i y=\cos x \cosh y-i \sin x \sinh y
$$

since $\cos i y=\cosh y$ and $\sin i y=i \sinh y$. To solve $2+\cos z=0$ is thus equivalent to finding $z=x+i y$ such that $\cos y \cosh y=-2$ and $\sin x \sinh y=0$.
Now $\sin x \sinh y=0$ if and only if either $\sinh y=0$ or $\sin x=0$. The first case is excluded because it requires $y=0$, so $\cosh y=1$, so $\cos x=-2$ which cannot happen.
The second case is equivalent to $x=k \pi$ for $k \in \mathbb{Z}$. Now $\cosh y=\frac{1}{2}\left(e^{y}+e^{-y}\right) \geq 1$ for all real $y$ with equality if and only if $y=0$; otherwise, $\cosh y=C$ has two distinct real roots for every $C>1$. We conclude that

$$
-2=\cos x \cosh y=\cos k \pi \cosh y=(-1)^{k} \cosh y
$$

has a solution if and only if $x=k \pi$ for some odd integer $k$ and $y$ is one of the two real roots of $\cosh y=2$.
2. Find all of values of $\tan ^{-1}(1+i)$.

Solution:

$$
\begin{aligned}
\tan ^{-1}(1+i) & =\frac{i}{2} \log \left(\frac{i+1+i}{i-1-i}\right) \\
& =\frac{i}{2} \log (-1-2 i) \\
& =\frac{i}{2}(\ln \sqrt{5}+i \arg (-1-2 i)) \\
& =-\frac{1}{2} \arg (-1-2 i)+i \frac{\ln \sqrt{5}}{2} \\
& =-\frac{1}{2} \arg (-1-2 i)+i \ln 5
\end{aligned}
$$

3. Evaluate the line integral $\int_{C}|z|^{2} d z$ where $C$ is the line segment from the point 0 to the point $1+i$.

## Solution:

Since $f(z):=|z|^{2}=x^{2}+y^{2}$, for $z(t)=t+i t,(0 \leq t \leq 1)$ is the parametrization of $C$ then we have $z^{\prime}(t)=(1+i) d t, f(z(t))=t^{2}+t^{2}=2 t^{2}$. Therefore

$$
\begin{aligned}
\int_{C}|z|^{2} d z & =\int_{0}^{1} 2 t^{2}(1+i) d t \\
& =2(1+i) \int_{0}^{1} t^{2} d t \\
& =2(1+i)\left[\frac{1}{3} t^{3}\right]_{0}^{1} \\
& =\frac{2}{3}(1+i) .
\end{aligned}
$$

4. By finding an antiderivative, evaluate the integral $\int_{0}^{\pi+2 i} \cos \left(\frac{z}{2}\right) d z$.
Solution:

$$
\begin{aligned}
& \int_{0}^{\pi+2 i} \cos \left(\frac{z}{2}\right) d z=\left[2 \sin \left(\frac{z}{2}\right)\right]_{0}^{\pi+2 i}=2 \sin \left(\frac{\pi+2 i}{2}\right)-2 \sin \left(\frac{0}{2}\right) \\
& =2 \frac{e^{i\left(\frac{\pi}{2}+i\right)}-e^{-i\left(\frac{\pi}{2}+i\right)}}{2 i}=-i\left(e^{i \pi / 2} e^{-1}-e^{-i \pi / 2} e\right) \\
& =-i\left(\frac{i}{e}+i e\right)=\frac{1}{e}+e=e+\frac{1}{e} .
\end{aligned}
$$

5. Use Cauchy's Integral Formula to evaluate $\int_{|z-1|=1} \frac{\cos (2 \pi z)}{z^{2}-1} d z$ where the integration path is oriented in the standard counterclockwise direction.
Solution:
Let $f(z)=\frac{\cos (2 \pi z)}{z+1}$. Then $f(z)$ is analytic at all points both interior to and on the contour $C$. Therefore, by the Cauchy Integral Formula, we have

$$
\begin{aligned}
\int_{|z-1|=1} \frac{\cos (2 \pi z)}{z^{2}-1} d z & =2 \pi i f(1) \\
& =2 \pi i\left[\frac{\cos (2 \pi z)}{z+1}\right]_{z=1} \\
& =2 \pi i \frac{\cos (2 \pi(1))}{1+1} \\
& =2 \pi i \frac{1}{1+1}=\pi i
\end{aligned}
$$

6. Find the value of the integral $\int_{C} \frac{z-b}{z-a} d z$ where $C$ is the unit circle traversed once counterclockwise. Be sure to consider the cases $|a|<1$ and $|a|>1$.

## Solution 1:

If $|a|>1$, then the integrand is analytic on $|z|<|a|$ and Cauchy-Goursat Theorem says that

$$
\int_{C} \frac{z-b}{z-a} d z=0
$$

If $|a|<1$, then define $f(z)=(z-b)$ which is analytic on $\mathbb{C}$. Then Cauchy Integral Formula says that

$$
\begin{aligned}
\int_{C} \frac{z-b}{z-a} d z & =\int_{C} \frac{f(z)}{z-a} d z \\
& =2 \pi i f(a) \\
& =2 \pi i(a-b)
\end{aligned}
$$

## Solution 2:

If $|a|<1$, then we could notice that $z-b=(z-a)+(a-b)$ and therefore

$$
\begin{aligned}
\int_{C} \frac{z-b}{z-a} d z & =\int_{C} d z+(a-b) \int_{C} \frac{1}{z-a} d z \\
& =2 \pi i(a-b)
\end{aligned}
$$

There are other ways to do this as well, but these two methods are the simplest.

# ÇANKAYA UNIVERSITY <br> Department of Mathematics and Computer Science <br> MATH 351 Complex Analysis I <br> Practice Problems-1 <br> First midterm <br> July 14, 2008 <br> 09:40 

## 1. Complex Numbers

### 1.1. Section 4. (p. 11)

3. Verify that $\sqrt{2}|z| \geq|\operatorname{Re} z|+|\operatorname{Im} z|$

Suggestion Reduce this inequality to $(|x|-|y|)^{2} \geq 0$.
Solution:
Let $z=x+i y \Longrightarrow$ the inequality becomes $\sqrt{2} \sqrt{x^{2}+y^{2}} \geq|x|+|y|$

$$
\begin{aligned}
& \Longleftrightarrow \quad 2\left(x^{2}+y^{2}\right) \geq(|x|+|y|)^{2}=x^{2}+y^{2}+2|x||y| \\
& \Longleftrightarrow \quad x^{2}+y^{2}-2|x||y| \geq 0 \\
& \Longleftrightarrow \quad(|x|-|y|)^{2} \geq 0 .
\end{aligned}
$$

This last form of the inequality to be verified is obviously true since the left-hand side is a perfect square.
4. In each case, sketch the set of points determined by the given condition:
(a) $|z-1+i|=1$; (b) $|z+i| \leq 3$; (c) $|z-4 i| \geq 4$.

Solution:
(a) $|z-1+i|=1$; it's a circle with center $z_{0}=(1,-1)$ and radius $R=1$.
(b) $|z+i| \leq 3$; it's a disk with center $z_{0}=(0,-1)$ and radius $R=3$.
(c) $|z-4 i| \geq 4$; it's the set of points outside the disk of radius $R=4$ and center $z_{0}=4 i$.
(p.13)
7. Use the established properties of moduli to show that when $\left|z_{3}\right| \neq\left|z_{4}\right|$,

$$
\left|\frac{z_{1}+z_{2}}{z_{3}+z_{4}}\right| \leq \frac{\left|z_{1}\right|+\left|z_{2}\right|}{\left|\left|z_{3}\right|-\left|z_{4}\right|\right|} .
$$

Solution:
$\left|\frac{z_{1}+z_{2}}{z_{3}+z_{4}}\right|=\frac{\left|z_{1}+z_{2}\right|}{\left|z_{3}+z_{4}\right|} \leq \frac{\left|z_{1}\right|+\left|z_{2}\right|}{\left|\left|z_{3}\right|-\left|z_{4}\right|\right|} \leq \frac{\left|z_{1}\right|+\left|z_{2}\right|}{\left|\left|z_{3}\right|-\left|z_{4}\right|\right|}$ by triangle inequality $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$ and the inequality $\left|z_{3} \pm z_{4}\right| \geq\left|\left|z_{3}\right|-\left|z_{4}\right|\right|$ (p.10).
10. By factoring $z^{4}-4 z^{2}+3$ into two quadratic factors, show that $z$ lies on the circle $|z|=2$, then

$$
\left|\frac{1}{z^{4}-4 z^{2}+3}\right| \leq \frac{1}{3}
$$

Solution:
Factorizing $z^{4}-4 z^{2}+3=\left(z^{2}-1\right)\left(z^{2}-3\right)$
$\left|\frac{1}{z^{4}-4 z^{2}+3}\right|=\frac{1}{\left|z^{4}-4 z^{2}+3\right|}=\frac{1}{\left|\left(z^{2}-1\right)\left(z^{2}-3\right)\right|}=\frac{1}{\left|z^{2}-1\right|\left|z^{2}-3\right|} \leq \frac{1}{\left.\left||z|^{2}-1\right|| | z\right|^{2}-3 \mid}$
$=\frac{1}{(4-1)(4-3)}=\frac{1}{3}$.
(p.21)

1. Find the principal argument $\operatorname{Arg} z$ when
(a) $z=\frac{i}{-2-2 i} ;(\mathrm{b}) z=(\sqrt{3}-i)^{6}$.

Solution:
(a)
$z=\frac{i}{-2-2 i}=-\frac{1}{2} \frac{i}{1+i} \frac{1-i}{1-i}=-\frac{1}{2} \frac{i-i^{2}}{1-i^{2}}=-\frac{1}{4}(1+i)=\frac{\sqrt{2}}{4}\left(-\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}\right)=\frac{\sqrt{2}}{4} e^{-3 \pi i / 4}$
$\Longrightarrow \operatorname{Arg}(z)=-\frac{3 \pi}{4}$
(b)
$z=(\sqrt{3}-i)^{6}$
Observe $\xi=\sqrt{3}-i \Longrightarrow|\xi|=\sqrt{3+1}=2 \Longrightarrow \xi=2\left(\frac{\sqrt{3}}{2}-\frac{i}{2}\right)=2 e^{-i \pi / 6}$
$z=\xi^{6}=\left(2 e^{-i \pi / 6}\right)^{6}=2^{6} e^{-i \pi}=2^{6} e^{i \pi}=-64\left(\right.$ since $-\pi=\pi+2 \pi$ and $\left.e^{2 \pi i}=1\right)$
$\Longrightarrow \operatorname{Arg}(z)=\pi$.

1. Derive the following trigonometric identities:
(a) $\cos 3 \theta=\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta$, (b) $\sin 3 \theta=3 \cos ^{2} \theta-\sin ^{3} \theta$.

Solution:
(a)
$z=\frac{i}{-2-2 i}=-\frac{1}{2} \frac{i}{1+i} \frac{1-i}{1-i}=-\frac{1}{2} \frac{i-i^{2}}{1-i^{2}}=-\frac{1}{4}(1+i)=\frac{\sqrt{2}}{4}\left(-\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}\right)=\frac{\sqrt{2}}{4} e^{-3 \pi i / 4}$
$\Longrightarrow \operatorname{Arg}(z)=-\frac{3 \pi}{4}$
(b)
$z=(\sqrt{3}-i)^{6}$
Observe $\xi=\sqrt{3}-i \Longrightarrow|\xi|=\sqrt{3+1}=2 \Longrightarrow \xi=2\left(\frac{\sqrt{3}}{2}-\frac{i}{2}\right)=2 e^{-i \pi / 6}$
$z=\xi^{6}=\left(2 e^{-i \pi / 6}\right)^{6}=2^{6} e^{-i \pi}=2^{6} e^{i \pi}=-64\left(\right.$ since $-\pi=\pi+2 \pi$ and $\left.e^{2 \pi i}=1\right)$
$\Longrightarrow \operatorname{Arg}(z)=\pi$.
(p.73)

1. Verify that each of these functions is entire:
(a) $f(z)=3 x+y+i(3 y-x)$; (b) $f(z)=\sin x \cosh y+i \cos x \sinh y$;
(c) $f(z)=e^{-y} \sin x-i e^{-y} \cos x$; (d) $f(z)=\left(z^{2}-2\right) e^{-x} e^{-i y}$.

Solution:
(a) $f(z)=\underbrace{3 x+y}+i \underbrace{(3 y-x)}$ is entire since

$$
u_{x}=3=v_{y} \text { and } u_{y}=1=-v_{x}
$$

(b) $f(z)=\underbrace{\sin x \cosh y}+i \underbrace{\cos x \sinh y}$ is entire since

$$
u_{x}=\cos x \cosh y=v_{y} \text { and } u_{y}=\sin x \sinh y=-v_{x} .
$$

(c) $f(z)=\underbrace{e^{-y} \sin x}+i \underbrace{\left(-e^{-y} \cos x\right)}$ is entire since

$$
u_{x}=e^{-y} \cos x=v_{y} \text { and } u_{y}=-e^{-y} \sin x=-v_{x}
$$

(d) $f(z)=\left(z^{2}-2\right) e^{-x} e^{-i y}$ is entire since it is the product of entire functions

$$
g(z)=z^{2}-2 \text { and } h(z)=e^{-x} e^{-i y}=e^{-x}(\cos y-i \sin y)=\underbrace{e^{-x} \cos y}+i \underbrace{\left(-e^{-x} \sin y\right)} .
$$

The function $g$ is entire since it is a polynomial, and $h$ is entire since

$$
u_{x}=-e^{-x} \cos y=v_{y} \text { and } u_{y}=-e^{-x} \sin y=-v_{x} .
$$

2. Show that each of these functions is nowhere analytic:
(a) $f(z)=x y+i y$
(b) $f(z)=2 x y+i\left(x^{2}-y^{2}\right)$.
(c) $f(z)=e^{y} e^{i x}$

## Solution:

(a)
$f(z)=x y+i y$ is nowhere analytic since

$$
u_{x}=v_{y} \Longrightarrow y=1 \text { and } u_{y}=-v_{x} \Longrightarrow x=0
$$

which means that the Cauchy-Riemann equations hold only at the point $z=(0,1)=i$.
$f(z)=e^{y} e^{i x}=e^{y}(\cos x+i \sin x)$ is nowhere analytic since

$$
u_{x}=v_{y} \Longrightarrow-e^{y} \sin x=e^{y} \sin x \Longrightarrow 2 e^{y} \sin x=0 \Longrightarrow \sin x=0
$$

and

$$
u_{y}=-v_{x} \Longrightarrow e^{y} \cos x=-e^{y} \cos x \Longrightarrow 2 e^{y} \cos x=0 \Longrightarrow \cos x=0
$$

More precisely, the roots of the equation $\sin x=0$ are $n \pi(n=0, \pm 1, \pm 2, \cdots)$, and $\cos (n \pi)=$ $(-1)^{n} \neq 0$. Consequently, the Cauchy-Riemann equations are not satisfied anywhere.
4. In each case, determine the singular points of the function and state why the function is analytic everywhere except at those points:
(a) $f(z)=\frac{2 z+1}{z\left(z^{2}+1\right)}$;
(b) $f(z)=\frac{z^{3}+i}{z^{2}-3 z+2}$;
(c) $f(z)=\frac{z^{2}+1}{(z+2)\left(z^{2}+2 z+2\right)}$.

Solution: (a)
$f(z)=\frac{2 z+1}{z\left(z^{2}+1\right)}$; this function is the quotient of two polynomials (a) $f(z)=\frac{P(z)}{Q(z)}$, hence it's analytic in any domain throughout which (a) $Q(z) \neq 0$.
$\longrightarrow z\left(z^{2}+1\right)=0$ iff (a) $z=0$ or (a) $z= \pm i$ (ant the numerator does not vanish at these points)
$\Longrightarrow$ singular points: $z=0, \pm i$ (They are poles, i.e., $\lim _{z \rightarrow 0, \pm i}|f(z)|=+\infty$ )
$f(z)=\frac{z^{3}+i}{z^{2}-3 z+2}$ similarly as above, check check where the denominator vanishes:
$z^{2}-3 z+2=0 \Longleftrightarrow z=\frac{3 \pm \sqrt{9-8}}{2}=\frac{3 \pm 1}{2} \Longrightarrow z_{1}=2, z_{2}=1$
and the numerator does not vanish at these points.
$\Longrightarrow$ singular points $z=1,2$ (poles)
(c) $f(z)=\frac{z^{2}+1}{(z+2)\left(z^{2}+2 z+2\right)}$
$(z+2)\left(z^{2}+2 z+2\right)=0$ iff $z=-2$ or $z^{2}+2 z+2=0 \Longleftrightarrow z=-1 \pm \sqrt{1-2}=-1 \pm i$
$\Longrightarrow$ singular points (poles) $z=-2,-1 \pm i$
(p.78)
7. Let a function $f(z)$ be analytic in a domain $D$. Prove that $f(z)$ must be constant throughout $D$ if
(a) $f(z)$ is real-valued for all $z \in D$;
(b) $|f(z)|$ is constant throughout $D$.

Solution:
(a)

Suppose $f(z) \in \mathbb{R}$ for all $z \in D \Longrightarrow v(x, y)=0$ on $D$
$\Longrightarrow u_{x}(x, y)=v_{y}(x, y)=0$
and
$u_{y}(x, y)=-v_{x}(x, y)=0$ on $D$.
$\Longrightarrow \nabla u(x, y)=0$ on $D$.
$u(x, y)=$ constant on $D \Longrightarrow f(z)=$ constant on $D$.
(b)

Suppose
$|f(z)|=c$ for all $z \in D$
If $c=0 \Longrightarrow f(z)=0$ on $D$, hence it's constant.
If $c \neq 0 \Longrightarrow|f(z)|^{2}=c^{2} \Longleftrightarrow f(z) \overline{f(z)}=c^{2} \Longleftrightarrow \overline{f(z)}=\frac{c^{2}}{f(z)}$
$\Longrightarrow$ both $f$ and $\bar{f}$ are analytic in $D$ (since $\bar{f}=\frac{c^{2}}{f}$ and $f \neq 0$ )
$\Longrightarrow f(z)=$ constant on $D$.
(otherway to solve it)
$f(z)=c$ and suppose $c \neq 0 \Longrightarrow u^{2}+v^{2}=c^{2}$
$\Longrightarrow 2 u u_{x}+2 v v_{x}=0$
$2 u u_{y}+2 v v_{y}=0$
$\longrightarrow 0=\left(u u_{x}+v v_{x}\right)^{2}+\left(u u_{y}+v v_{y}\right)^{2}=u^{2} u_{x}^{2}+v^{2} v_{x}^{2}+2 u v u_{x} v_{x}+u^{2} u_{y}^{2}+v^{2} v_{y}^{2}+2 u v u_{y} v_{y}$
$\longrightarrow\left(u^{2}+v^{2}\right)\left(u_{x}^{2}+u_{y}^{2}\right)=0 \Longrightarrow u_{x}^{2}+u_{y}^{2}=0$
$\Longrightarrow u_{x}=u_{y}=0 \&$ (by C-R equations) $\Longrightarrow v_{x}=v_{y}=0$
$\Longrightarrow u=$ constant $v=$ constant $\Longrightarrow f(z)=\mathrm{constant}$

