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1.

a) Express 2eiπ/4 in the standard form a+ ib.

b) Express

(
1− i√
3 + i

)8
in polar form reiθ.

Solution:

a)

2eiπ/4 = 2
(
cos
(π
4

)
+ i sin

(π
4

))
= 2

(
1√
2
+ i

1√
2

)
=
√
2 + i

√
2.

b)
(
1− i√
3 + i

)8
=

(√
2e−iπ/4

2eiπ/6

)8
=

(
1√
2

)8 (
e−i5π/12

)8
=
1

16
e−i10π/3 =

1

16
ei2π/3.



2.

a) For what values of x, y is the function f (x+ iy) = xy + ix is differentiable? analytic?
b) Find a function analytic in the entire plane whose real part is u (x, y) = x3y − xy3.
Solution:

a)

ux = y, uy = x

vx = 1, vy = 0

Thus, by Cauchy-Riemann equations, if f is differentiable at x+ iy, then x = −1, y = 0. Since
all partial derivatives are continuous, f is indeed differentiable at x = −1, y = 0.
Since f is not differentiable in a neighborhood of this point, f is nowhere analytic.

b) Find harmonic conjugate v of u:
Since vy = ux = 3x

2y − y3,

v =

∫ (
3x2y − y3

)
dy = (3/2)x2y2 − y4/4 + h (x) ,

where h (x) can be determined from the equations:

vx = 3xy
2 + h′ (x) , vx = −uy = −x3 + 3xy2

thus, h′ (x) = −x3 and so h (x) = −x4/4 + C, where C is a constant.
It follows that

v = (3/2)x2y2 − y4/4− x4/4 + C,
is a harmonic conjugate for u and that f (x, y) = u+iv =

(
x3y − xy3

)
+i
(
(3/2) x2y2 − y4/4− x4/4 + C

)

is an analytic function whose real part is u (x, y) = x3y − xy3.



3.

a) Let C be the unit circle traversed clockwise. Find the value of

∫

C

z sin z2 dz without explicitly

calculating the integral.
b) Let C be the circle of radius 1 centered at 2 + i traversed counterclockwise. Find the value

of

∫

C

1

z
dz without explicitly calculating the integral.

Solution:

a) We know that f (z) = z sin z2 is everywhere analytic so in particular, inside and on C,

therefore by Cauchy-Goursat theorem,

∫

C

z sin z2 = 0.

b) The function f (z) =
1

z
has one isolated singular point namely, z = 0, and it is analytic

everywhere else, but z = 0 is outside the contour C, therefore by Cauchy-Goursat theorem,∫

C

1

z
dz = 0.



4. Evaluate the following integrals:

(a)

∫

|z−1|=1

z

z2 − 1 dz, (b)

∫

|z|=2

zez

(z − 1)3
dz, (c)

∫

|z|=1

z sin z

(z − 2)3
dz

Solution:

a) Let f (z) =
z

z + 1
. Then f (z) is analytic inside and on C. Therefore, by the Cauchy

Integral Formula, we have

∫

|z−1|=1

z

z2 − 1 dz =
∫

|z−1|=1

f (z)

z − 1 dz = 2πif (1) = 2πi
[
z

z + 1

]

z=1

=

2πi
1

1 + 1
= πi.

b) Let g (z) = zez. Then g (z) is analytic inside and on C. Hence, by the Cauchy Integral

Formula, we have

∫

|z|=2

zez

(z − 1)3
dz =

2πi

2!
g′′ (1) = πi [2ez + zez]z=1 = πi

[
2e1 + e1

]
= 3πie.

c)

∫

|z|=1

z sin z

(z − 2)3
dz = 0, by the Cauchy-Goursat theorem since the integrand

z sin z

(z − 2)3
is

analytic at all points in the interior and on C.



5. Evaluate the following contour integrals

a)

∫

C

(
z + z2

)
dz where C is the straight line segment from z = 1 to z = i.

b)

∫

C

√
z dz where C is the segment of the ellipse

x2

9
+
y2

4
= 1 from z = 3 to z = 2i. (use the

principal branch of
√
z).

Solution:

a)

f (z) = z + z2 has antiderivative F (z) =
1

2
z2 +

1

3
z3 in C. Therefore,

∫

C

f (z) dz =

[
1

2
z2 +

1

3
z3
]i

1

= −1
2
− i

3
−
(
1

2
+
1

3

)
= −4

3
− i

3
.

b)

f (z) =
√
z (principal branch) has antiderivative F (z) =

2

3
z3/2 (principal branch).

Therefore,
∫

C

f (z) dz =

[
2

3
z3/2

]2i

3

=
2

3

(
(2i)3/2 − 33/2

)

=
2

3

(
23/2ei3π/4 − 33/2

)

= −4
3
− 2
√
3 +

4

3
i



6. Find the Taylor series representation for f (z) =
z2

(2 + z)2
, indicate its domain of convergence.

Solution:

f (z) =
z2

(2 + z)2
;

We start with

1

2 + z
=
1

2

1

1−
(
− z
2

) =
1

2

∞∑

n=0

(
−z
2

)n
=

∞∑

n=0

(−1)n
2n+1

zn for
∣∣∣
z

2

∣∣∣ < 1 i.e., for |z| < 2.

Next we differentiate:

d

dz

(
1

2 + z

)
=

d

dz

(
∞∑

n=0

(−1)n
2n+1

zn

)

, for |z| < 2

− 1

(2 + z)2
=

∞∑

n=1

(−1)n
2n+1

nzn−1, for |z| < 2

− 1

(2 + z)2
=

∞∑

n=0

(−1)n+1
2n+2

(n+ 1) zn, for |z| < 2

1

(2 + z)2
=

∞∑

n=0

(−1)n
2n+2

(n+ 1) zn, for |z| < 2

z2

(2 + z)2
=

∞∑

n=0

(−1)n
2n+2

(n+ 1) zn+2, for |z| < 2
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1. Find all complex numbers z that are complex conjugates of their own squares i.e., z = z2.
Solution:

We need to solve the equation z = z2; that is, we need to find all pairs (x, y) of real numbers
such that x− iy = x2− y2+ i · 2xy. Since 1 and i are linearly independent, this means we need
to solve the two equations

x = x2 − y2
−y = 2xy

for x and y. For y = 0, we get x = 0 or x = 1. For y �= 0, we get x = −1
2

and y = ±1
2

. So

there are four solutions, namely, 0, 1,−1
2
+ i
1

2
,
1

2
− i1
2

.



2. Find all of the roots of (−8i)1/3 in the form a+ ib and point out which is the principal root.
Solution:

Since −8i = 8 exp
[
i
(
−π
2
+ 2kπ

)]
(k = 0, 1, 2), the three cube roots of the number z0 = −8i

are

(−8i)1/3 = 2 exp
[
i

(
−π
6
+
2kπ

3

)]
(k = 0, 1, 2) .

the principal one being

c0 = 2 exp

(
i
−π
6

)
= 2

(√
3

2
− i1
2
=
√
3− i

)

.

The others are
c1 = 2 exp

(
i
π

2

)
= 2i

and

c2 = 2 exp

(
i
7π

6

)
= 2

(

−
√
3

2
− i1
2

)

= −
(√
3 + 1

)
.



3. Determine where f ′ (z) exists and find its value when

(a) f (z) =
1

z
;

(b) f (z) = x2 + iy2.
Solution:

(a)

f (z) =
1

z
=
1

z
· z
z
=

z

|z|2
=

x

x2 + y2
+ i

−y
x2 + y2

. So

u =
x

x2 + y2
and v =

−y
x2 + y2

.

Since

ux =
y2 − x2
(x2 + y2)2

= vy and uy =
−2xy

(x2 + y2)2
= −vx x2 + y2 �= 0,

f ′ (z) exists when z �= 0. Moreover, when z �= 0,

f ′ (z) = ux + ivx =
y2 − x2
(x2 + y2)2

+ i
2xy

(x2 + y2)2
= −x

2 − i2xy − y2
(x2 + y2)2

= − (x− iy)
2

(x2 + y2)2
= − (z)2

(zz)2
= − (z)2

z2 (z)2
= − 1

z2
.

(b)
f (z) = x2 + iy2. Hence u = x2 and v = y2. Now

ux = vy =⇒ 2x = 2y =⇒ y = x and uy = −vx =⇒ 0 = 0.

So f ′ (z) exists only when y = x, and we find that

f ′ (x+ ix) = ux (x, x) + ivx (x, x) = 2x+ i0 = 2x.



4. Determine if the following functions are analytic
(a) f (z) = 3x+ y + i (3y − x)
(b) f (z) = 2xy + i

(
x2 − y2

)
.

Solution:

(a)
f (z) = 3x+ y︸ ︷︷ ︸+i (3y − x)︸ ︷︷ ︸ = u+ iv where u = 3x+ y and v = 3y − x is entire since

ux = 3 = vy and uy = 1 = −vx.
(b) f (z) = 2xy︸︷︷︸+i

(
x2 − y2

)
︸ ︷︷ ︸

= u+ iv where u = 2xy and v = x2− y2 is nowhere analytic since

ux = vy =⇒ 2y = −2y =⇒ y = 0 and uy = −vx =⇒ 2x = −2x =⇒ x = 0,

which means that the Cauchy-Riemann equations hold only at the point z = (0, 0) = 0.



5. Show that u (x, y) = 2x − x3 + 3xy2 is harmonic in some domain and find a harmonic
conjugate v (x, y).
Solution:

It is straightforward to show that uxx+uyy = 0. To find a harmonic conjugate v (x, y), we start
with ux (x, y) = 2− 3x2 + 3y2. Now

ux = vy =⇒ vy = 2− 3x2 + 3y2 =⇒ v (x, y) = 2y − 3x2y + y3 + φ (x) .

Then
uy = −vx =⇒ 6xy = 6xy − φ′ (x) =⇒ φ′ (x) = 0 =⇒ φ (x) = c.

Consquently,
v (x, y) = 2y − 3x2y + y3 + c.



6. Find all values of z such that ez = 1 +
√
3i.

Solution:

Write ez = 1 +
√
3i as exeiy = 2ei(π/3), from which we see that

ex = 2 and y =
π

3
+ 2nπ (n = 0,±1,±2, · · · ) .

That is,

x = ln 2 and y =

(
2n+

1

3

)
π (n = 0,±1,±2, · · · ) .

Consequently

z = ln 2 +

(
2n+

1

3

)
πi (n = 0,±1,±2, · · · ) .
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1. Find all the zeros of the function f (z) = 2 + cos z. (Hint: if they exist, they must be
nonreal.)
Solution:

Following the hint, write z = x+ iy with real and imaginary parts x, y ∈ R. But then
cos z = cos (x+ iy) = cosx cos iy − sin x sin iy = cos x cosh y − i sin x sinh y,

since cos iy = cosh y and sin iy = i sinh y. To solve 2 + cos z = 0 is thus equivalent to finding
z = x+ iy such that cos y cosh y = −2 and sin x sinh y = 0.
Now sinx sinh y = 0 if and only if either sinh y = 0 or sin x = 0. The first case is excluded
because it requires y = 0, so cosh y = 1, so cosx = −2 which cannot happen.

The second case is equivalent to x = kπ for k ∈ Z. Now cosh y = 1

2

(
ey + e−y

)
≥ 1 for all real

y with equality if and only if y = 0; otherwise, cosh y = C has two distinct real roots for every
C > 1. We conclude that

−2 = cosx cosh y = cos kπ cosh y = (−1)k cosh y
has a solution if and only if x = kπ for some odd integer k and y is one of the two real roots
of cosh y = 2.



2. Find all of values of tan−1 (1 + i).
Solution:

tan−1 (1 + i) =
i

2
log

(
i+ 1 + i

i− 1− i

)

=
i

2
log (−1− 2i)

=
i

2

(
ln
√
5 + i arg (−1− 2i)

)

= −1
2
arg (−1− 2i) + i ln

√
5

2

= −1
2
arg (−1− 2i) + i ln 5



3. Evaluate the line integral

∫

C

|z|2 dz where C is the line segment from the point 0 to the

point 1 + i.
Solution:

Since f (z) := |z|2 = x2 + y2, for z (t) = t+ it, (0 ≤ t ≤ 1) is the parametrization of C then we
have z′ (t) = (1 + i) dt, f (z (t)) = t2 + t2 = 2t2. Therefore

∫

C

|z|2 dz =

∫
1

0

2t2 (1 + i) dt

= 2 (1 + i)

∫
1

0

t2 dt

= 2 (1 + i)

[
1

3
t3
]1

0

=
2

3
(1 + i) .



4. By finding an antiderivative, evaluate the integral∫ π+2i

0

cos
(z
2

)
dz.

Solution:∫ π+2i

0

cos
(z
2

)
dz =

[
2 sin

(z
2

)]π+2i

0

= 2 sin

(
π + 2i

2

)
− 2 sin

(
0

2

)

= 2
ei(

π

2
+i) − e−i(π2+i)

2i
= −i

(
eiπ/2e−1 − e−iπ/2e

)

= −i
(
i

e
+ ie

)
=
1

e
+ e = e+

1

e
.



5. Use Cauchy’s Integral Formula to evaluate

∫

|z−1|=1

cos (2πz)

z2 − 1 dz where the integration path

is oriented in the standard counterclockwise direction.
Solution:

Let f (z) =
cos (2πz)

z + 1
. Then f (z) is analytic at all points both interior to and on the contour

C. Therefore, by the Cauchy Integral Formula, we have

∫

|z−1|=1

cos (2πz)

z2 − 1 dz = 2πif (1)

= 2πi

[
cos (2πz)

z + 1

]

z=1

= 2πi
cos (2π (1))

1 + 1

= 2πi
1

1 + 1
= πi.



6. Find the value of the integral

∫

C

z − b
z − a dz where C is the unit circle traversed once coun-

terclockwise. Be sure to consider the cases |a| < 1 and |a| > 1.
Solution 1:

If |a| > 1, then the integrand is analytic on |z| < |a| and Cauchy-Goursat Theorem says that
∫

C

z − b
z − a dz = 0.

If |a| < 1, then define f (z) = (z − b) which is analytic on C. Then Cauchy Integral Formula
says that

∫

C

z − b
z − a dz =

∫

C

f (z)

z − a dz

= 2πif (a)

= 2πi (a− b) .
Solution 2:

If |a| < 1, then we could notice that z − b = (z − a) + (a− b) and therefore
∫

C

z − b
z − a dz =

∫

C

dz + (a− b)
∫

C

1

z − a dz

= 2πi (a− b) .
There are other ways to do this as well, but these two methods are the simplest.
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���

1.1. Section 4. (p. 11)

3. Verify that
√
2 |z| ≥ |Re z|+ |Im z|

Suggestion Reduce this inequality to (|x| − |y|)2 ≥ 0.
Solution:
Let z = x+ iy =⇒ the inequality becomes

√
2
√
x2 + y2 ≥ |x|+ |y|

⇐⇒ 2
(
x2 + y2

)
≥ (|x|+ |y|)2 = x2 + y2 + 2 |x| |y|

⇐⇒ x2 + y2 − 2 |x| |y| ≥ 0
⇐⇒ (|x| − |y|)2 ≥ 0.

This last form of the inequality to be verified is obviously true since the left-hand side is a
perfect square.
––––––––––––––––––––––––––––––––––––––––––

4. In each case, sketch the set of points determined by the given condition:
(a) |z − 1 + i| = 1; (b) |z + i| ≤ 3; (c) |z − 4i| ≥ 4.
Solution:
(a) |z − 1 + i| = 1; it’s a circle with center z0 = (1,−1) and radius R = 1.
(b) |z + i| ≤ 3; it’s a disk with center z0 = (0,−1) and radius R = 3.
(c) |z − 4i| ≥ 4; it’s the set of points outside the disk of radius R = 4 and center z0 = 4i.
––––––––––––––––––––––––––––––––––––––––––

(p.13)
7. Use the established properties of moduli to show that when |z3| �= |z4|,∣∣∣∣

z1 + z2
z3 + z4

∣∣∣∣ ≤
|z1|+ |z2|
||z3| − |z4||

.

Solution:∣∣∣∣
z1 + z2
z3 + z4

∣∣∣∣ =
|z1 + z2|
|z3 + z4|

≤ |z1|+ |z2|
||z3| − |z4||

≤ |z1|+ |z2|
||z3| − |z4||

by triangle inequality |z1 + z2| ≤ |z1| + |z2|
and the inequality |z3 ± z4| ≥ ||z3| − |z4|| (p.10).
––––––––––––––––––––––––––––––––––––––––––

10. By factoring z4 − 4z2 + 3 into two quadratic factors, show that z lies on the circle |z| = 2,
then ∣∣∣∣

1

z4 − 4z2 + 3

∣∣∣∣ ≤
1

3



Solution:
Factorizing z4 − 4z2 + 3 =

(
z2 − 1

) (
z2 − 3

)
∣∣∣∣

1

z4 − 4z2 + 3

∣∣∣∣ =
1

|z4 − 4z2 + 3| =
1

|(z2 − 1) (z2 − 3)| =
1

|z2 − 1| |z2 − 3| ≤
1

∣∣|z|2 − 1
∣∣ ∣∣|z|2 − 3

∣∣

=
1

(4− 1) (4− 3) =
1

3
.

––––––––––––––––––––––––––––––––––––––––––

(p.21)
1. Find the principal argument Arg z when

(a) z =
i

−2− 2i ; (b) z =
(√
3− i

)6
.

Solution:
(a)

z =
i

−2− 2i = −
1

2

i

1 + i

1− i
1− i = −

1

2

i− i2
1− i2 = −

1

4
(1 + i) =

√
2

4

(
− 1√

2
− i√

2

)
=

√
2

4
e−3πi/4

=⇒Arg(z) = −3π
4

(b)

z =
(√
3− i

)6

Observe ξ =
√
3− i =⇒ |ξ| =

√
3 + 1 = 2 =⇒ ξ = 2

(√
3

2
− i

2

)

= 2e−iπ/6

z = ξ6 =
(
2e−iπ/6

)6
= 26e−iπ = 26eiπ = −64 (since −π = π + 2π and e2πi = 1)

=⇒Arg(z) = π.
––––––––––––––––––––––––––––––––––––––––––

1. Derive the following trigonometric identities:
(a) cos 3θ = cos3 θ − 3 cos θ sin2 θ, (b) sin 3θ = 3 cos2 θ − sin3 θ.
Solution:
(a)

z =
i

−2− 2i = −
1

2

i

1 + i

1− i
1− i = −

1

2

i− i2
1− i2 = −

1

4
(1 + i) =

√
2

4

(
− 1√

2
− i√

2

)
=

√
2

4
e−3πi/4

=⇒Arg(z) = −3π
4

(b)

z =
(√
3− i

)6

Observe ξ =
√
3− i =⇒ |ξ| =

√
3 + 1 = 2 =⇒ ξ = 2

(√
3

2
− i

2

)

= 2e−iπ/6

z = ξ6 =
(
2e−iπ/6

)6
= 26e−iπ = 26eiπ = −64 (since −π = π + 2π and e2πi = 1)

=⇒Arg(z) = π.
––––––––––––––––––––––––––––––––––––––––––

(p.73)
1. Verify that each of these functions is entire:
(a)f (z) = 3x+ y + i (3y − x); (b)f (z) = sinx cosh y + i cosx sinh y;
(c)f (z) = e−y sin x− ie−y cosx; (d)f (z) =

(
z2 − 2

)
e−xe−iy.

Solution:



(a)f (z) = 3x+ y︸ ︷︷ ︸+i (3y − x)︸ ︷︷ ︸ is entire since

ux = 3 = vy and uy = 1 = −vx
(b) f (z) = sin x cosh y︸ ︷︷ ︸+i cosx sinh y︸ ︷︷ ︸ is entire since

ux = cosx cosh y = vy and uy = sin x sinh y = −vx.
(c) f (z) = e−y sinx︸ ︷︷ ︸+i

(
−e−y cosx

)
︸ ︷︷ ︸

is entire since

ux = e
−y cosx = vy and uy = −e−y sinx = −vx.

(d) f (z) =
(
z2 − 2

)
e−xe−iy is entire since it is the product of entire functions

g (z) = z2 − 2 and h (z) = e−xe−iy = e−x (cos y − i sin y) = e−x cos y︸ ︷︷ ︸+i
(
−e−x sin y

)
︸ ︷︷ ︸

.

The function g is entire since it is a polynomial, and h is entire since

ux = −e−x cos y = vy and uy = −e−x sin y = −vx.
–––––––––––––––––––––––––––––––––––––
2. Show that each of these functions is nowhere analytic:
(a) f (z) = xy + iy
(b) f (z) = 2xy + i

(
x2 − y2

)
.

(c) f (z) = eyeix

Solution:
(a)
f (z) = xy + iy is nowhere analytic since

ux = vy =⇒ y = 1 and uy = −vx =⇒ x = 0,

which means that the Cauchy-Riemann equations hold only at the point z = (0, 1) = i.
(b)
f (z) = eyeix = ey (cos x+ i sinx) is nowhere analytic since

ux = vy =⇒ −ey sin x = ey sin x =⇒ 2ey sin x = 0 =⇒ sin x = 0

and
uy = −vx =⇒ ey cosx = −ey cosx =⇒ 2ey cosx = 0 =⇒ cosx = 0.

More precisely, the roots of the equation sin x = 0 are nπ (n = 0,±1,±2, · · · ), and cos (nπ) =
(−1)n �= 0. Consequently, the Cauchy-Riemann equations are not satisfied anywhere.
––––––––––––––––––––––––––––––––––––––––––

4. In each case, determine the singular points of the function and state why the function is
analytic everywhere except at those points:

(a) f (z) =
2z + 1

z (z2 + 1)
; (b) f (z) =

z3 + i

z2 − 3z + 2 ; (c) f (z) =
z2 + 1

(z + 2) (z2 + 2z + 2)
.

Solution: (a)

f (z) =
2z + 1

z (z2 + 1)
; this function is the quotient of two polynomials (a) f (z) =

P (z)

Q (z)
, hence it’s

analytic in any domain throughout which (a) Q (z) �= 0.
−→ z

(
z2 + 1

)
= 0 iff (a) z = 0 or (a) z = ±i (ant the numerator does not vanish at these

points)
=⇒ singular points: z = 0,±i (They are poles, i.e., lim

z→0,±i
|f (z)| = +∞)

(b)

f (z) =
z3 + i

z2 − 3z + 2 similarly as above, check check where the denominator vanishes:



z2 − 3z + 2 = 0 ⇐⇒ z =
3±

√
9− 8
2

=
3± 1
2

=⇒ z1 = 2, z2 = 1

and the numerator does not vanish at these points.
=⇒ singular points z = 1, 2 (poles)

(c) f (z) =
z2 + 1

(z + 2) (z2 + 2z + 2)
(z + 2)

(
z2 + 2z + 2

)
= 0 iff z = −2 or z2 + 2z + 2 = 0⇐⇒ z = −1±

√
1− 2 = −1± i

=⇒ singular points (poles) z = −2,−1± i
––––––––––––––––––––––––––––––––––––––––
(p.78)
7. Let a function f (z) be analytic in a domainD. Prove that f (z)must be constant throughout
D if
(a) f (z) is real-valued for all z ∈ D;
(b) |f (z)| is constant throughout D.
Solution:
(a)
Suppose f (z) ∈ R for all z ∈ D =⇒ v (x, y) = 0 on D
=⇒ ux (x, y) = vy (x, y) = 0
and
uy (x, y) = −vx (x, y) = 0 on D.
=⇒ ∇u (x, y) = 0 on D.
u (x, y) = constant on D =⇒ f (z) = constant on D.
(b)
Suppose
|f (z)| = c for all z ∈ D
If c = 0 =⇒ f (z) = 0 on D, hence it’s constant.

If c �= 0 =⇒ |f (z)|2 = c2 ⇐⇒ f (z) f (z) = c2 ⇐⇒ f (z) =
c2

f (z)

=⇒ both f and f are analytic in D (since f =
c2

f
and f �= 0)

=⇒ f (z) = constant on D.
(otherway to solve it)
f (z) = c and suppose c �= 0 =⇒ u2 + v2 = c2

=⇒ 2uux + 2vvx = 0
2uuy + 2vvy = 0

−→ 0 = (uux + vvx)
2 + (uuy + vvy)

2 = u2u2x + v
2v2x + 2uvuxvx + u

2u2y + v
2v2y + 2uvuyvy

−→
(
u2 + v2

) (
u2x + u

2

y

)
= 0 =⇒ u2x + u

2

y = 0
=⇒ ux = uy = 0 & (by C-R equations) =⇒ vx = vy = 0
=⇒ u = constant v = constant =⇒ f (z) = constant
––––––––––––––––––––––––––––––––––––––––––


