

MATH 351 Complex Analysis I

 1^{st} Midterm November 8, 2007 12:40-14:30

Surname	:	
-		
Signature	:	

- The exam consists of 5 questions of equal weight.
- Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- \bullet Show all your work. Correct answers without sufficient explanation might <u>not</u> get full credit.
- $\bullet\,$ Calculators are $\underline{\mathrm{not}}$ allowed.

GOOD LUCK!

Please do $\underline{\text{not}}$ write below this line.

Q1	Q2	Q3	Q4	Q5	TOTAL
20	20	20	20	20	100

Question 1.

(a) Find all the values of
$$\left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)^{\frac{1}{4}}$$
. (10 points)

(b) Sketch the set of points satisfying(5 points)(i)
$$1 < |2z - 6| < 2$$
,(5 points)(ii) $\operatorname{Re}(iz+2) > 0$.(5 points)

Answer 1.

(a) we need to solve
$$z^{4} = \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)$$
 or equivalently,
 $z^{4} = (ze^{i0})^{\frac{4}{2}} + i^{4}e^{4i\theta} = e^{\frac{2\pi}{3}}$.
Now, $z^{4} = 1$ and $4\theta = -\frac{2\pi}{3} + 2k\pi$, $k \in \mathbb{Z}$
 $\Rightarrow z = 1$ and $\theta = -\frac{2\pi}{12} + \frac{k\pi}{2}$, $k \in \mathbb{Z}$
 $\frac{-\frac{1}{2}}{12} + \frac{2\pi}{3} \Rightarrow z = 1$ and $\theta = -\frac{\pi}{6} + \frac{k\pi}{2}$, $k \in \mathbb{Z}$
 $\frac{-\sqrt{3}}{12} + \frac{\sqrt{3}}{2}i$
Actually, there are only four different
values of $z = ze^{i\theta}$ which correspond to $k = 0, 1, 2, 3$. Other

values of k repeats previous solutions.
So,
$$\left(-\frac{1}{2} - \frac{\sqrt{3}}{2};\right)^{\frac{1}{4}}$$
 has four different values:

· /

$$z_{0} = e^{-\frac{\pi}{6}i} = \frac{\sqrt{3}}{2} - \frac{i}{2}i, \quad z_{1} = e^{i\frac{\pi}{3}} = \frac{i}{2} + i\frac{\sqrt{3}}{2}i, \quad z_{2} = e^{i\frac{5\pi}{6}} = -\frac{\sqrt{3}}{2} + \frac{i}{2}i$$

$$z_{3} = e^{-\frac{1}{2}} - i\frac{\sqrt{3}}{2}i, \quad z_{3} = -\frac{1}{2} - i\frac{\sqrt{3}}{2}i, \quad z_{4} = e^{i\frac{\pi}{3}} = \frac{1}{2} + i\frac{\sqrt{3}}{2}i, \quad z_{5} = e^{-\frac{\sqrt{3}}{2}} + \frac{1}{2}i$$

(b) (i)
$$1 < 12z - 61 < 2 \iff \frac{1}{2} < 1z - 31 < 1$$

Re(iz+2) = Re(i(x+iy)+2) = Re(ix-y+2) = -y+270(ü) => 273

Question 2. Simplify

(a)
$$\left(\frac{1+i}{1-i}\right)^{16} + \left(\frac{1-i}{1+i}\right)^8$$
, (5 points)

(b)
$$\frac{(1-i)^{10}(\sqrt{3}+i)^5}{(-1-i\sqrt{3})^{10}}$$
, (5 points)

(c)
$$\frac{2}{(1-i)(3-i)(i+2)}$$
, (5 points)

(d)
$$\left(\frac{2+i}{3-2i}\right)^2$$
. (5 points)

Answer 2. (a)
$$\frac{1+i}{1-i} = \frac{1+i+i-1}{1+i-i+1} = \frac{2i}{2} = i$$
 and $\frac{1-i}{1+i} = \frac{1}{\frac{1+i}{1-i}} = \frac{1}{i} = -1$
(1+i)

So,
$$\left(\frac{1+i}{1-i}\right)^{16} + \left(\frac{1-i}{1+i}\right)^8 = (i)^{16} + (-i)^8 = (-1)^8 + (-1)^4 = 1+1=2$$
.

(b) Note that
$$1-i = \sqrt{2} e^{-i\frac{\pi}{4}}$$
, $\sqrt{3}+i = 2e^{i\frac{\pi}{6}}$ and $-1-i\sqrt{3} = 2e^{-i\frac{2\pi}{3}}$

$$\frac{1}{-i\sqrt{2}}$$

$$\frac{1}{\sqrt{4}}$$

$$\frac{1}$$

(c)
$$\frac{2}{(1-i)(3-i)(i+2)} = \frac{2}{(3-i-3i-1)(i+2)} = \frac{2}{(2-4i)(i+2)} = \frac{2}{2i+4+4-8i}$$

= $\frac{2}{8-6i} = \frac{1}{4-3i} = \frac{4+3i}{25}$

= e

(4)
$$\left(\frac{2+i}{3-2i}\right)^2 = \left(\frac{(2+i)(3+2i)}{13}\right)^2 = \left(\frac{6+4i+3i-2}{13}\right)^2$$

= $\left(\frac{4+7i}{13}\right)^2 = \frac{16}{169} - \frac{49}{169} + \frac{56i}{169} = -\frac{33}{169} + \frac{56i}{169}$

Question 3. Find the image of the set $\mathscr{D} = \{z \in \mathbb{C} : |z-3| = 1\}$ under the mapping

(a)
$$f(z) = 4iz + 2i$$
, (10 points)
(b) $f(z) = \frac{1}{z}$. (10 points)

(a)
$$w \in f(D) \Leftrightarrow f^{-1}(w) \in D$$
, and $w = 4iz+2i \Rightarrow$

$$\frac{w-2i}{4i} = z \Rightarrow f^{-1}(w) = \frac{w-2i}{4i} \quad So, \quad w \in f(D) \Rightarrow$$

$$|f^{-1}(w) - 3| = |\frac{w-2i}{4i} - 3| = 1 \Rightarrow |w-2i-12i| = 14i| = 4 \Rightarrow$$

$$|w-14i| = 4.$$

$$|w^{-14i}| = 4.$$

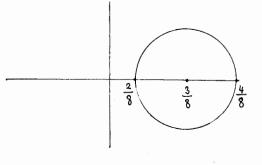
$$|w^{-14i}| = 4.$$

(b)
$$w = \frac{1}{2} \Rightarrow z = \frac{1}{w} \Rightarrow f^{-1}(w) = \frac{1}{w} \text{ and } w \in f(\partial) \Rightarrow$$

 $f^{-1}(w) \in \partial \Rightarrow |f^{-1}(w) - 3| = 1 \Rightarrow |\frac{1}{w} - 3| = 1.$
Say $w = u + iv$. So $w \in f(\partial) \Rightarrow |\frac{1}{u + iv} - 3| = 1 \Rightarrow$

$$\begin{aligned} |1 - 3u_{-} 3iv| &= |u + iv| \implies (1 - 3u)^{2} + (3v^{2}) = u^{2} + v^{2} \implies \\ 1 - 6u_{+} 9u^{2}_{+} + 9v^{2}_{-} &= u^{2} + v^{2}_{-} \implies 8u^{2}_{+} + 8v^{2}_{-} - 6u_{+} | = 0 \implies \\ u^{2}_{+} v^{2}_{-} - \frac{6}{8}u_{+} + \frac{1}{8} = 0 \implies (u - \frac{3}{8})^{2}_{-} + v^{2}_{-} = \frac{9}{64} - \frac{1}{8} = \frac{1}{64} \end{aligned}$$

$$\Rightarrow f(\mathcal{D}) = \left\{ \omega \in \mathbb{C} : \left(u - \frac{3}{8} \right)^2 + v^2 = \left(\frac{1}{8} \right)^2 \right\}$$



Question 4.

(a) Let

$$f(z) = \begin{cases} \frac{z^2}{|z|^2} & \text{if } z \neq 0\\ 1 & \text{if } z = 0 \end{cases}$$

Decide whether f is continuous at z = 0. (10 points) $z^2 + iz + 2$ (10 points)

(b) Evaluate
$$\lim_{z \to i} \frac{z^2 + iz + 2}{z - i}$$
 if it exits.

Answer 4.

(a) Let
$$\mathcal{J} = \{ z = iy : 0 \le y \le z \text{ for some } z > 0 \}$$
.
Since
 $im f(z) = lim \frac{(iy)^2}{y^2} = lim - \frac{y^2}{y^2} = -1 \neq l = f(0),$
 $z = 0$
 $z \in \mathcal{J}$
 $f = n \text{ not continuous at } z = 0.$

(b)
$$\lim_{z \to i} \frac{z^2 + iz + 2}{z - i} \left(\frac{i^2 - 1 + 2}{i - i} = \frac{0}{0} \right)$$
 in older minate form.

And so,

$$\lim_{z \to i} \frac{z^2 + iz + 2}{z - i} = \lim_{z \to i} \frac{(z - i)(z + 2i)}{z - i}$$

 $= \lim_{z \to i} z + 2i = 3i$.
 $z - i$

Question 5. Let $f(z) = z^4$.

- (a) Show that f is differentiable everywhere and find f'(z).(5 points)(b) Write f(z) in the form u(x, y) + iv(x, y).(5 points)(c) Show that $u_x(x, y) = v_y(x, y)$ and $u_y(x, y) = -v_x(x, y)$.(5 points)
- (d) Show that $f'(z) = u_x(x, y) + iv_x(x, y) = v_y(x, y) iu_y(x, y).$ (5 points)

Answer 5.

(a)
$$f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$$

 $= \lim_{h \to 0} \frac{(z+h)^4 - z^4}{h} = \lim_{h \to 0} \frac{z^4 + 4z^3h + 6z^2h^2 + 4zh^3 + h^4 - z^4}{h}$
 $= \lim_{h \to 0} (4z^3 + 6z^2h + 4zh^2 + h^3) = 4z^3$ for all $z \in \mathbb{C}$.

(b)
$$f(z) = z^4 = (x + iy)^4 = x^4 + 4x^3iy + 6x^2(iy)^2 + 4x(iy)^3 + (iy)^4$$

 $= x^4 + i 4x^3y - 6x^2y^2 - i 4xy^3 + y^4$
 $= x^4 - 6x^2y^2 + y^4 + i(4x^3y - 4xy^3) = y^4$
 $u(x_1y) = x^4 - 6x^2y^2 + y^4$ and $v(x_1y) = 4x^3y - 4xy^3$

(c)
$$u_{x}(x_{1}y) = 4x^{3} - 12xy^{2}$$
 $V_{y}(x_{1}y) = 4x^{3} - 12xy^{2} \Rightarrow u_{x}(x_{1}y) = V_{y}(x_{1}y)$
and $u_{y}(x_{1}y) = -12x^{2}y + 4y^{3}$ $V_{x}(x_{1}y) = 12x^{2}y - 4y^{3} \Rightarrow u_{y}(x_{1}y) = -V_{x}(x_{1}y)$

(d)
$$u_{x}(x_{1}y) + iV_{x}(x_{1}y) = 4x^{3} - 12xy^{2} + i(12x^{2}y - 4y^{3})$$

 $= 4(x^{3} + 3x^{2}iy - 3xy^{2} - iy^{3})$
 $= 4(x + iy)^{3}$
 $= 4z^{3} = f'(z)$

MATH 351 Complex Analysis I

 2^{nd} Midterm December 17, 2007 08:40-10:30

Surname	:	
Name	:	
-		
Signature	:	

- The exam consists of 5 questions of equal weight.
- Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- \bullet Show all your work. Correct answers without sufficient explanation might <u>not</u> get full credit.
- Calculators are <u>not</u> allowed.

GOOD LUCK!

Please do \underline{not} write below this line.

Q1	Q2	Q3	Q4	Q5	TOTAL
20	20	20	20	20	100

Question 1.

(a) Find the most general harmonic function u of the form

 $u(x,y) = ax^3 + bx^2y + cxy^2 + dy^3,$ where a, b, c, d are real coefficients. (9 points) (b) What is the harmonic conjugate v of u? (9 points) (c) Express f = u + iv as a function of z.

Answer 1.

 $u_y = bx^2 + 2cxy + 3dy^2$ $u_x = 3ax^2 + 2bxy + cy^2$ (a) $u_{xx} = 6ax + 2by$ uyy = 2cx + 6dy $u_{xx} + u_{yy} = 0 \Rightarrow x(6a+2c) + y(2b+6d) = 0 \Rightarrow c = -3a, b = -3d$ has the form キ ι $u(x,y) = ax^{3} - 3dx^{2}y - 3axy^{2} + dy^{3}$, a, d $\in \mathbb{R}$.

(b)
$$u_x = v_y \Rightarrow v = \int (3ax^2 - 6dxy - 3ay^2) dy$$

 $= 3ax^2y - 3dxy^2 - ay^3 + \phi(x)$
where ϕ is a function depending only on x .
 $v_x = -u_y \Rightarrow 6axy - 3dy^2 + \phi'(x) = 3dx^2 + 6axy - 3dy^2$
and so, $\phi'(x) = 3dx^2$ and hence $\phi(x) = dx^3 + \alpha$, $\alpha \in \mathbb{R}$
Putting all things together
 $v(x,y) = 3ax^2y - 3dxy^2 - ay^3 + dx^3 + \alpha$, $\alpha \in \mathbb{R}$.

(c)
$$f(z) = u(x_1y) + iv(x_1y)$$

 $= ax^3 - 3dx^2y - 3axy^2 + dy^3 + i 3ax^2y - 3idxy^2 - iay^3 + idx^3 + ix$
 $= a(x^3 - 3xy^2 + 3ix^2y - iy^3) + id(x^3 + 3ix^2y - 3xy^2 - iy^3) + ix$
 $= a(x + iy)^3 + id(x + iy)^3 + ix = (a + id)z^3 + ix, x \in \mathbb{R}$
If we denote $a + id$ by A and ix by B, we get
 $f(z) = Az^3 + B$, $A \in \mathbb{C}$, $B \in i\mathbb{R}$.

(2 points)

Question 2. In each part, determine all possible values and give the principle value of the following numbers (put in the form x + iy).

(a) i^{2}	(5 points)
(b) $\frac{1}{(1+i)^{\frac{1}{2}}}$	(5 points)
(c) $\log i^3$	(5 points)
(d) $i^{\sqrt{3}}$	(5 points)

Answer 2.

(a)
$$i^{\frac{1}{2}} = e^{\frac{1}{2}\log i} = \frac{1}{2}(\ln \ln i + i \arg(i)) = \frac{1}{2}(i(\frac{\pi}{2} + 2n\pi)) = \frac{\pi}{4}in\pi$$

 $e^{\frac{1}{2}} = e^{\frac{1}{2}e^{-1}} = e^{\frac{1}$

The principal one is:
$$\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}$$
.
(b) $\frac{1}{(1+i)^{\frac{1}{2}}} = (1+i)^{-\frac{1}{2}} = e^{-\frac{1}{2}\log(1+i)} = -\frac{1}{2}(\ln|1+i|+i\arg(1+i))$
 $= e^{-\frac{1}{2}(\ln|\overline{2}|+i|(\frac{\pi}{4}+2n\pi))}$
 $= e^{-$

(c)
$$\log i^3 = \log(-i) = \ln |-i| + i \arg(-i) = i(-\frac{\pi}{2} + 2n\pi) = -\frac{i\pi}{2} + 2n\pi i$$
, $n \in \mathbb{Z}$
The principal one is: $-i\frac{\pi}{2}$.

(d)
$$i^{\overline{3}} = e^{\overline{3} \log i} \sqrt{3} (\ln \ln i + i \arg(i)) \quad \sqrt{3} (i (\frac{\pi}{2} + 2n\pi))$$

 $= e^{i} (\sqrt{3\pi} + 2n\sqrt{3\pi})$
 $= e^{i} \cos((\frac{\sqrt{3\pi}}{2} + 2n\sqrt{3\pi}) + i \sin(\frac{\sqrt{3\pi}}{2} + 2n\sqrt{3\pi})), n \in \mathbb{Z}$.
The principal one is: $\cos(\frac{\sqrt{3\pi}}{2} + i \sin(\frac{\sqrt{3\pi}}{2}))$

Question 3.

(a) Find all roots of the equation $\log z = i\frac{\pi}{2}$. (10 points) (b) Show that $\cos z = 0$ if and only if $z = (n + \frac{1}{2})\pi$ for some $n \in \mathbb{Z}$. (10 points)

Answer 3.

Actually, part (a) of this question should be corrected in a way:

(a) Find all roots of the equation $\text{Log}_{7} = i \frac{\pi}{2}$ or

(a) Find all z with
$$\log z \neq i\frac{\pi}{2}$$
.

Now, solutions are:

(a) $\log z = i\frac{\pi}{2} \Rightarrow \ln |z| + i \operatorname{Arg} z = i\frac{\pi}{2} \Rightarrow \ln |z| = 0$ and $\operatorname{Arg} z = i\frac{\pi}{2}$ Thus |z|=1 and $\operatorname{Arg} z = i\frac{\pi}{2}$ and so $z=|z|e^{i\operatorname{Arg} z} = e^{\frac{\pi}{2}} = i$. That is, there is only one solution, which is z=i.

(a")
$$\ln |z| + i \arg z = \exists i \frac{\pi}{2} = \exists$$

 $\ln |z| + i \operatorname{Arg} z + 2n\pi i = i \frac{\pi}{2}$ for some $n \in \mathbb{Z}$
So $|z| = l$ and $\operatorname{Arg} z = i \left(\frac{\pi}{2} - 2n\pi \right)$ for some $n \in \mathbb{Z}$.
Since $-\pi \langle \operatorname{Arg} z \langle \pi \rangle$, n must be 0 and so
 $z = e^{i \frac{\pi}{2}} = i$.

(b)
$$\cos z = \cos(x+iy) = \cos x \cosh y - i \sin x \sinh y = 0 \implies$$

i) $\cos x \cosh y = 0$ and ii) $\sin x \sinh y = 0$

Since $\cosh y$ is never zero for any real y, $\cos x$ should be zero and we know that $x = (n + \frac{1}{2})x$ for some $n \in \mathbb{Z}$. Then, by (ii) $\sinh y = (-1)^n \sinh y = 0$ and this happens only when y=0, and hence $z = (n + \frac{1}{2})\pi$. Reverse implication is trivial.

Question 4.

(a) Find lim ³⁺ⁿⁱ/_{n→∞} ³⁺ⁿⁱ/_{n+2ni}, if it exits. (10 points)
(b) Determine whether the series ∑[∞]_{k=2} ^{ik}/_{(1+i)^{k-1}} is convergent or divergent. If convergent, find its sum. (10 points)

Answer 4.

(a)
$$\lim_{n \to \infty} \frac{3+n!}{n+2n!} = \lim_{n \to \infty} \frac{3n-6n!+n^2!+2n^2}{n^2+4n^2}$$

$$= \lim_{n \to \infty} \frac{3n+2n^2}{5n^2} + i \lim_{n \to \infty} \frac{n^2-6n}{5n^2} = \frac{2}{5} + \frac{i}{5}$$
(b) $\sum_{k=2}^{\infty} \frac{i}{(1+i)^{k-1}} = \sum_{n=0}^{\infty} \frac{i^{n+2}}{(1+i)^{n+1}} = \frac{i^2}{(1+i)} \sum_{n=0}^{\infty} \left(\frac{i}{1+i}\right)^n = \frac{-1}{1+i} \sum_{n=0}^{\infty} \left(\frac{i}{(1+i)}\right)^n$
We know that the geometric series
 $\sum_{n=0}^{\infty} z^n = \begin{cases} \frac{1}{1-2} & \text{if } |z| < 1 \\ diverges & \text{if } |z| \ge 1. \end{cases}$

Put $z = \frac{1}{1+i}$ Since $|z| = \frac{1}{\sqrt{2}} \langle 1 \rangle$ $\sum_{k=2}^{\infty} \frac{1}{(1+i)^{k-1}} = -\frac{1}{1+i} \sum_{n=0}^{\infty} z^n = -\frac{1}{1+i} \frac{1}{1-z}$

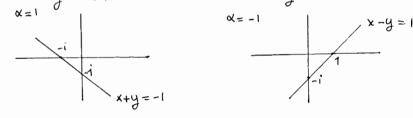
$$= - \frac{1}{1+i} \cdot \frac{1}{1-\frac{1}{1+i}} = -\frac{1}{1+i} \cdot \frac{1+i}{1} = -1.$$

Question 5.

(a) Determine where f is	
(i) differentiable	(7 points)
(ii) analytic	(3 points)
when $f(z) = (x + \alpha y)^2 + 2i(x - \alpha y)$ for α real and constant.	
(b) Let $f(x, y) = y^3 - 3x^2y + i(x^3 - 3xy^2 + 2)$.	
(i) Find the region D where f is analytic.	(5 points)
(ii) Find the derivative of f and express it as a function of z in D .	(5 points)

Answer 5.

(a) (i) Let $u(x_1y) = (x + xy)^2$ and $v(x_1y) = 2(x - xy)$ Since u and v are polynomials they belong to C^1 and so f is differentiable if and only if u and v satisfy Cauchy-Riemann conditions. Since $u_x = 2(x + xy)$, $v_y = -2x$, $u_y = 2(x + xy)x$, $v_x = 2x_1y$, x must satisfy (i) x + xy = -x and (ii) (x + xy)x = -1 multiplying (i) by -x and adding to (ii), we obtain $x^2 - 1 = 0$. Thus, x = 1 or x = -1. If x = 1, then C - R equations hold only on the line x + y = -1 and if x = -1, C - R equations hold only on the line x - y = 1.



(ii) In any case $(\alpha = 1 \text{ or } \alpha = -1)$, f is nowhere analytic because the lines x+y=-1 and x-y=1 has no interior points in \mathbb{R}^2 . (b) (i) Let $u(x_iy)=y^3-3x^2y$, $v(x_iy)=x^3-3xy^2+2$.

Since $u_{\chi} = -6xy = v_y$ and $u_y = 3y^2 - 3x^2 = -v_{\chi}$ for all $(x,y) \in \mathbb{R}^2$ and $u_1v \in \mathbb{C}^1(\mathbb{R}^2)$, f is everywhere differentiable and so it is an entire function.

(ii)
$$f'(z) = u_{\chi} + iv_{\chi} = -6xy + i(3x^2 - 3y^2)$$

= 3i(x^2 - y^2 + 2ixy)
= 3i(x + iy)^2 = 3iz^2.

MATH 351 Complex Analysis I

Final January 14, 2008 11:00-13:00

Surname	:	
-		
Signature	:	

- The exam consists of 5 questions of equal weight.
- Please read the questions carefully and write your answers under the corresponding questions. Be neat.
- \bullet Show all your work. Correct answers without sufficient explanation might <u>not</u> get full credit.
- Calculators are \underline{not} allowed.

GOOD LUCK!

Please do $\underline{\text{not}}$ write below this line.

Q1	Q2	Q3	Q4	Q5	TOTAL
20	20	20	20	20	100

Question 1. Evaluate

$$\int\limits_C (z^2 + 3z) \, dz$$

along

(a) the circle $ z = 2$ from 2 to $2i$ in a counterclockwise direction,	(6 points)
(b) the straight line from 2 to $2i$,	(7 points)
(c) the straight lines from 2 to $2 + 2i$ and then from $2 + 2i$ to $2i$.	(7 points)

Answer 1.

$$\begin{aligned} \begin{array}{c} (a) \\ (a)$$

$$S_{c_{1}}(2^{2}+3^{2})dz = \int_{0}^{1} ((2+2it)^{2}+3(2+2it))(2i)dt$$

$$= 2i \int_{0}^{1} (-4t^{2}+14it+10)dt = 2i \left(-\frac{4t^{3}}{3}\right)_{0}^{1} + 14i \frac{t^{2}}{2} \int_{0}^{1} + 10t \int_{0}^{1} \int_{0}^{1} dt$$

$$= 2i \left(-\frac{4}{3}+7i+10\right) = \frac{52}{3}i - 14.$$

$$\begin{split} S(z^{2}+3z) dz &= S \left((2-2t+2i)^{2} + 3(2-2t+2i) \right) (-2) dt \\ &= -2 S \left((4t^{2} + 14i - 14t - 8it + 6) dt \right) \\ &= -2 \left((4t^{3} + 14i + 14i + 16i + 16$$

•

Question 2. Let C_R denote the upper half of the circle |z| = R, R > 2, taken in the counterclockwise direction. Show that

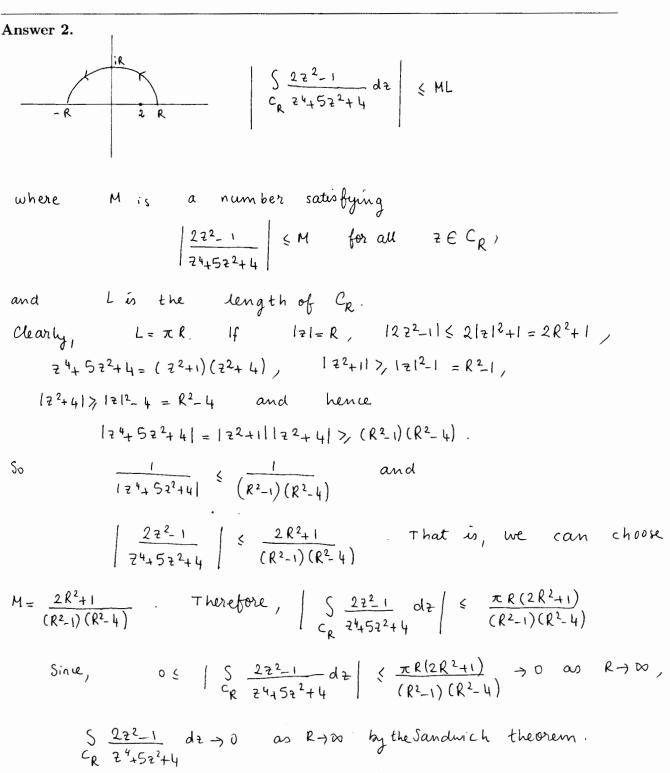
$$\left| \int_{C_R} \frac{2z^2 - 1}{z^4 + 5z^2 + 4} \, dz \right| \le \frac{\pi R (2R^2 + 1)}{(R^2 - 1)(R^2 - 4)}.$$

Then, show that the value of the integral

$$\int_{C_R} \frac{2z^2 - 1}{z^4 + 5z^2 + 4} \, dz$$

tends to zero as R tends to infinity.

(20 points)



Question 3. Find all solutions of the equation $\sin z = 2$ by using

(a) the expression $\sin z = \sin x \cosh y + i \cos x \sinh y$.	(10 points)
(b) the inverse function $\arcsin z = -i \log \left(iz + (1-z^2)^{\frac{1}{2}}\right)$.	(10 points)

Answer 3.

(a) $\sin z = \sin x \cosh y + i \cos x \sinh y = 2 \Rightarrow$ $\sin x \cosh y = 2$ and $\cos x \sinh y = 0$. Since $\cos x \sinh y = 0$, we have $x = (n + \frac{1}{2})\pi$ or y = 0. for $n \in \mathbb{I}$. When y = 0, it follows from $\sin x \cosh y = 2$ that $\sin x = 2$, which is impossible because $-1 < \sin x < 1$ for all $x \in \mathbb{R}$. So $x = (n + \frac{1}{2})\pi$. Then $\sin x \cosh y = (-1)^n \cosh y = 2$. Since $\cosh y \neq 0$ for all $y \in \mathbb{R}$, n should be an even integer, and $\cosh y = 2$. Since $\cosh y = \frac{e^2 + e^2}{2} = 2$, we have $e^2 + e^2 = 4$ and $e^{2y} + 1 = 4e^2$ or equivalently $(e^2)^2 - 4e^2 + 1 = 0$. Solving this quadratic equation for e^2 , we obtain $e^2 = 2 \pm \sqrt{3}$ and hence $y = \ln (2 \pm \sqrt{3})$. So $z = (2n + \frac{1}{2})\pi + i \ln (2 \pm \sqrt{3})$, $n \in \mathbb{Z}$.

(b)
$$\sin 2 = 2 = 7$$
 $2 = \arccos 2 = 7$
 $2 = -i \log (2i + (1 - 4)^{\frac{1}{2}})$
 $= -i \log (2i \pm \sqrt{3}i)$
 $= -i (\ln 12i \pm \sqrt{3} + i \arg (2i \pm \sqrt{3}i))$
 $= -i (\ln (2 \pm \sqrt{3}) + i (\frac{\pi}{2} + 2n\pi))$, $n \in \mathbb{Z}$
 $= (2n + \frac{1}{2})\pi - i \ln (2 \pm \sqrt{3})$, $n \in \mathbb{Z}$
 $= (2n + \frac{1}{2})\pi + i \ln (2 \pm \sqrt{3})$, $n \in \mathbb{Z}$

Question 4. Find the domain of convergence of

(a)
$$\sum_{n=0}^{\infty} n^2 (2z-1)^n$$
. (10 points)
(b) $\sum_{n=0}^{\infty} \frac{(-1)^n}{n!} (z+1)^n$. (10 points)

Answer 4.

(a)
$$\sum_{n=0}^{\infty} n^2 (2z-1)^n = \sum_{n=0}^{\infty} n^2 2^n (z-\frac{1}{2})^n$$

Spower series
Let $a_n = n^2 2^n$, then $g = \frac{1}{\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}} = \lim_{n \to \infty} \frac{(n+1)^2 2^{n+1}}{n^2 2^n} = \frac{1}{2}$

If $|z - \frac{1}{2}| < \frac{1}{2}$ series converges absolutely.

If
$$|z_{-}\frac{1}{2}| = \frac{1}{2}$$
, $|n^{2}2^{n}(z_{-}\frac{1}{2})^{n}| = n^{2} \neq 0$ as $n \neq \infty = >$

series diverges by nth term test. So, the domain of convergence is $\{z \in \mathbb{C} \mid |z - \frac{1}{2}| < \frac{1}{2}\}$

(b) Let
$$a_n = \frac{(-1)^n}{n!}$$
. Then,
 $\beta = \frac{1}{(-1)^n} = \frac{1}{(-1)^n} = \infty$.

$$\lim_{n \to \infty} \frac{1}{|a_n|} \lim_{n \to \infty} \frac{1}{(n+1)!}$$

Thus, the series converges everywhere. That is, the domain of convergence is C.

Question 5.

- (a) Use any method to show that the function $f(z) = z + \overline{z}$ is nowhere differentiable.
- (b) Determine whether $u(x, y) = e^{-x}(x \sin y y \cos y)$ is harmonic in \mathbb{C} , and find its harmonic conjugate if it is harmonic. (10 points)

(10 points)

Answer 5.

(a)
$$f(x) = x + \overline{x} = x + iy + x - iy = 2x$$
, so $u(x_1y) = 2x$ and $v(x_1y) = 0$.
Then, $u_{x} = 2$, $u_{y} = 0$, $v_{x} = 0$, $v_{y} = 0$. Since $u_{x} = v_{y}$ is never
satisfied, f is nowhere differentiable.
(b) $u_{x} = -e^{-x} x \sin y + e^{-x} \sin y + e^{-x} y \cos y$
 $u_{xx} = e^{-x} x \sin y - 2e^{-x} \sin y - e^{-x} y \cos y$
 $u_{yy} = -e^{-x} x \sin y + 2e^{-x} \sin y + e^{-x} y \cos y$.
Since, $u_{xx} + u_{yy} = 0$ for all (x, y) , u is harmonic in C.
Let v be a harmonic compugate of u, so $u_{z} = v_{y}$ implies
 $v = -e^{-x} x \sin y + e^{-x} y \sin y + e^{-x} y \cos y dy$
 $= e^{-x} x \cos y - e^{-x} \cos y + e^{-x} y \sin y + e^{-x} \cos y dy$
 $= e^{-x} x \cos y - e^{-x} \cos y + e^{-x} y \sin y + e^{-x} \cos y dy$

$$u_{y} = -v_{x} = i$$

$$v_{x} = -e^{-x} \cos y + e^{-x} \cos y - e^{-x} y \sin y + \phi(x)$$

$$= -e^{x} x \cos y + e^{-x} \cos y - e^{-x} y \sin y = i\phi(x) = 0 = i\phi(x) = 0,$$

for some CER. Therefore, $v = e^{-x} cosy + e^{-x} ysiny + C$.

MATH 351 Complex Analysis I Make-up for the first midterm

January 24, 2008 13:00-15:00

QUESTIONS

(1) (a) Find all the values of $(-16)^{\frac{1}{4}}$ in rectangular coordinates and locate them in the complex plane. (10 points)

(b) Sketch the set of points satisfying
(i)
$$|z - 2| > |z - 3|$$
, (5 points)
(ii) $\operatorname{Re}(\overline{z} - i) = 2$. (5 points)

(2) (a) Compute and express in Cartesian form 1

(

(i)
$$\frac{1}{i^{2015}}$$
, (5 points)

(ii)
$$(\sqrt{3}+i)^6$$
, (5 points)

(b) Represent the following complex numbers in polar form.

i)
$$\frac{6}{i+\sqrt{3}}$$
, (5 points)

(ii)
$$(5+5i)^3$$
.

(3) (a) Find the image of the set $\mathscr{D} = \left\{ re^{i\theta} \mid r > 3, \frac{2\pi}{3} < \theta < \frac{3\pi}{4} \right\}$ the mapping $w = z^3$. (10 points)(b) Find the image of the set $\mathscr{D} = \{z = x + iy \mid x > 1, y > 1\}$ under the mapping $\frac{1}{z}$. (10 points)(4) (a) Let

$$f(z) = \begin{cases} \frac{(\operatorname{Re}(z))^2}{|z|} & \text{if } z \neq 0\\ 0 & \text{if } z = 0 \end{cases}$$

Decide whether f is continuous at z = 0.

(10 points)

(5 points)

(5 points)

(5 points)

- (b) Evaluate $\lim_{z \to 1+i} \frac{z^2 + z 1 3i}{z^2 2z + 2}$ if it exits. Do not use L'Hospital's rule. (5) Let $f(z) = z^3 + 1$. (10 points)
 - (a) By using the definition of derivative show that f is differentiable everywhere and find f'(z).
 - (b) Write f(z) in the form u(x, y) + iv(x, y).
 - (c) Show that $u_x(x,y) = v_y(x,y)$ and $u_y(x,y) = -v_x(x,y)$. (5 points)
 - (d) Show that $f'(z) = u_x(x, y) + iv_x(x, y) = v_y(x, y) iu_y(x, y)$. (5 points)

MATH 351 Complex Analysis I

Make-up for the second midterm January 24, 2008 13:00-15:00

QUESTIONS

(1)	(a) Determine whether $u(x,y) = y^3 - 3x^2y$ is harmonic. If it is harmonic find its harmonic conjug	gate.
		(10 points)
	(b) Does an analytic function $f(z) = u(x, y) + iv(x, y)$ exist for which $v(x, y) = x^3 + y^3$? Why or	why not?
		(10 points)
(2)	(a) Find all values of z for which the following equation $e^z = 1 + i\sqrt{3}$ hold.	(10 points)
	(b) Find all values of $(1+i)^{2-i}$. Indicate which one is the principle.	(10 points)
(3)	(a) Express $\cos(1+i)$ in Cartesian form.	(10 points)
	(b) Show that $\sinh z = 0$ if and only if $z = n\pi i$, $n \in \mathbb{Z}$.	(10 points)
(4)	(a) Evaluate $\sum_{n=0}^{\infty} \left(\frac{1}{2+i}\right)^n$.	(10 points)
	(b) Find the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{n! z^n}{n^n}$.	(10 points)
(5)	(a) Determine where $f(z) = 8x - x^3 - xy^2 + i(x^2y + y^3 - 8y)$ is	
	(i) differentiable	(7 points)
	(ii) analytic	(3 points)
	(b) Let $f(z) = 3x + y + i(3y - x), \ z = x + iy.$	
	(i) Find the region D where f is analytic.	(5 points)

(i) Find the region D where f is analytic.(5 points)(ii) Find the derivative of f and express it as a function of z in D.(5 points)