

ÇANKAYA UNIVERSITY

Department of Mathematics and Computer Science

MCS 352 - Complex Calculus

FIRST MIDTERM EXAMINATION 26.03.2012

STUDENT NUMBER: NAME-SURNAME: SIGNATURE: INSTRUCTOR: Seçil Gergün DURATION: 110 minutes

Question	Grade	Out of
1		20
2		20
3		20
4		20
5		20
Total		100

IMPORTANT NOTES:

- 1) Please make sure that you have written your student number and name above.
- 2) Check that the exam paper contains 5 problems.
- 3) Show all your work. No points will be given to correct answers without reasonable work.

Question 1.

- (a) Sketch the set of points determined by
 - (i) $|z-1|^2 + |z+1|^2 < 8$, (5 points)
 - (ii) $0 < \operatorname{Arg}(z 1 i) < \frac{\pi}{3}$. (5 points)
- (b) Find all solutions of the equation $z^4 = -8 + i8\sqrt{3}$ in rectangular coordinates and mark them on the complex plane. (10 points)

Answer 1.

Question 2.

(a) Let $f(z) = 4(\operatorname{Re} z)(\operatorname{Im} z) - i(\overline{z})^2$.	
(i) Where is f differentiable?	(5 points)
(ii) Where is f analytic?	(3 points)
(iii) Calculate f' at the points of differentiability.	(2 points)
(b) Let $u(x, y) = xy + 3x^2y - y^3$.	
(i) Show that u is harmonic everywhere.	(3 points)
(ii) Find a harmonic conjugate v of u .	(5 points)
(iii) Express $f = u + iv$ as a function of z.	(2 points)

Answer 2.

Question 3.

(a) Find $\lim_{n \to \infty} \left(\frac{1}{2} + \frac{i}{4}\right)^n$.	(10 points)
---	--------------

(b) Find the radius and the disk of convergence of the power series $\sum_{n=0}^{\infty} \frac{(z-i)^n}{(3+4i)^n}$. (10 points)

Answer 3.

Question 4.

(a) Solve the equation $e^z = -ie$.	(10 points)
(b) (i) Find all values of $(-1 + i\sqrt{3})^{\frac{3}{2}}$.	(6 points)
(ii) Find the principal value of $(-1 + i\sqrt{3})^{\frac{3}{2}}$.	(4 points)

Answer 4.

Question 5.

- (a) Describe the image of
 - (i) the circle |z| = 1, (8 points)

(4 points)

(ii) the disk |z| < 1

under the transformation $w = \frac{iz-i}{z+1}$.

(b) Let \mathscr{D} be the part of the annulus $e^2 < |z| < e^3$ in the open third quadrant (Re z < 0, Im z < 0). Find the image of the \mathscr{D} under the principal logarithm function. (8 points)

Answer 5.

ÇANKAYA UNIVERSITY

Department of Mathematics and Computer Science

MCS 352 - Complex Calculus

SECOND MIDTERM EXAMINATION 30.04.2012

STUDENT NUMBER: NAME-SURNAME: SIGNATURE: INSTRUCTOR: Seçil Gergün DURATION: 110 minutes

Question	Grade	Out of
1		20
2		20
3		20
4		20
5		20
Total		100

IMPORTANT NOTES:

- 1) Please make sure that you have written your student number and name above.
- 2) Check that the exam paper contains 5 problems.
- 3) Show all your work. No points will be given to correct answers without reasonable work.

Question 1.

(a) Prove that

$$\arccos z = -i \log \left(z + i(1 - z^2)^{\frac{1}{2}} \right).$$

(10 points)

(b) Solve the equation
$$\cos z = \frac{3}{4}i.$$
 (10 points)

Answer 1.

Question 2.

- (a) Evaluate the integral $\int_C \bar{z} \, dz$ where C is the part of the curve $y = x^3$ from $z_1 = -2 8i$ to $z_2 = 1 + i$. (10 points)
- (b) Evaluate

$$\int\limits_C \operatorname{Log} z \, dz$$

(10 points)

where C is the line segment from 1 to 1 + i.

Answer 2.

Question 3.

(a) Let C be the circle |z - i| = 1. Evaluate

(i)
$$\oint_C \frac{2z}{z^2 + 1} dz$$
, (5 points)
(ii) $\oint_C \sec z \, dz$. (5 points)

(b) Let C be the circle |z| = 1. Evaluate

$$\oint_C \frac{z+3}{z^3+2z^2} \, dz.$$

(10 points)

Answer 3.

Question 4.

- (a) Find the Laurent series expansion of $f(z) = \frac{2}{-z^2 + 4z 3}$ which is valid in 1 < |z| < 3. (10 points)
- (b) Find the Maclaurin series of $f(z) = \cosh z$ and state where it is valid. (10 points)

Answer 4.

Question 5.

- (a) Locate the singularities of $f(z) = ze^{\frac{1}{z}}$ and determine their type. (10 points)
- (b) Locate the zeros and poles of $f(z) = \frac{z^2}{e^z 1}$ and determine their order. (10 points)

Answer 5.

ÇANKAYA UNIVERSITY

Department of Mathematics and Computer Science

MCS 352 - Complex Calculus

FINAL EXAMINATION 28.05.2012

STUDENT NUMBER: NAME-SURNAME: SIGNATURE: INSTRUCTOR: Seçil Gergün DURATION: 120 minutes

Question	Grade	Out of
1		20
2		20
3		20
4		20
5		20
Bonus		20
Total		120

IMPORTANT NOTES:

- 1) Please make sure that you have written your student number and name above.
- 2) Check that the exam paper contains 6 problems.
- 3) Show all your work. No points will be given to correct answers without reasonable work.

Question 1. In each part, find and classify all the isolated singularities of f and find the corresponding residues.

(a)
$$f(z) = \frac{1}{z^7 - z^9}$$
. (8 points)
(b) $f(z) = z^3 \sin \frac{1}{z^2}$. (6 points)
(c) $f(z) = \frac{e^z - 1 - z}{z^2}$. (6 points)

Answer 1.

Question 2. In each part, evaluate

(a)
$$\oint_{|z|=2} \frac{e^z}{z^2 - 4z + 3} dz.$$
 (10 points)

(b)
$$\oint_{|z|=2} \frac{1}{(z^2-1)(z^2-2)(z^2-3)} dz.$$
 (10 points)

Answer 2.

Question 3. Evaluate

(20 points)

$$\int_0^{2\pi} \frac{\cos\theta}{5+3\cos\theta} \, d\theta.$$

Answer 3.

Question 4. In each part, use residues to evaluate

(a)
$$\int_{0}^{\infty} \frac{1}{(x^{2}+1)^{2}} dx.$$
 (10 points)
(b) $\int_{-\infty}^{\infty} \frac{x \sin \pi x}{x^{2}+2x+5} dx.$ (10 points)

Answer 4.

Question 5.

(a) Let
$$f(z) = \frac{(z^2+1)^2}{(z^2+2z+2)^3}$$
. Evaluate $\frac{1}{2\pi i} \oint_{|z|=4} \frac{f'(z)}{f(z)} dz$. (10 points)

(b) Prove that all the roots of $z^7 - 5z^3 + 12 = 0$ lie between the circles |z| = 1 and |z| = 2. (10 points)

Answer 5.

Answer.