ÇANKAYA UNIVERSITY
Department of Mathematics and Computer Science

MCS 352-Complex Calculus

FIRST MIDTERM EXAMINATION

 26.03.2012
STUDENT NUMBER:

NAME-SURNAME:

SIGNATURE:

INSTRUCTOR: Seçil Gergün
DURATION: 110 minutes

Question	Grade	Out of
1		20
2		20
3		20
4		20
5		20
Total		100

IMPORTANT NOTES:

1) Please make sure that you have written your student number and name above.
2) Check that the exam paper contains 5 problems.
3) Show all your work. No points will be given to correct answers without reasonable work.

Question 1.

(a) Sketch the set of points determined by
(i) $|z-1|^{2}+|z+1|^{2}<8$,
(ii) $0<\operatorname{Arg}(z-1-i)<\frac{\pi}{3}$.
(5 points)
(b) Find all solutions of the equation $z^{4}=-8+i 8 \sqrt{3}$ in rectangular coordinates and mark them on the complex plane.

Answer 1.

Question 2.

(a) Let $f(z)=4(\operatorname{Re} z)(\operatorname{Im} z)-i(\bar{z})^{2}$.
(i) Where is f differentiable?
(ii) Where is f analytic?
(iii) Calculate f^{\prime} at the points of differentiability.
(b) Let $u(x, y)=x y+3 x^{2} y-y^{3}$.
(i) Show that u is harmonic everywhere.
(ii) Find a harmonic conjugate v of u.
(iii) Express $f=u+i v$ as a function of z.

Answer 2.

Question 3.

(a) Find $\lim _{n \rightarrow \infty}\left(\frac{1}{2}+\frac{i}{4}\right)^{n}$.
(b) Find the radius and the disk of convergence of the power series $\sum_{n=0}^{\infty} \frac{(z-i)^{n}}{(3+4 i)^{n}}$. (10 points)

Answer 3.

Question 4.

(a) Solve the equation $e^{z}=-i e$.
(b) (i) Find all values of $(-1+i \sqrt{3})^{\frac{3}{2}}$.
(ii) Find the principal value of $(-1+i \sqrt{3})^{\frac{3}{2}}$.

Answer 4.

Question 5.

(a) Describe the image of
(i) the circle $|z|=1$,
(ii) the disk $|z|<1$
under the transformation $w=\frac{i z-i}{z+1}$.
(b) Let \mathscr{D} be the part of the annulus $e^{2}<|z|<e^{3}$ in the open third quadrant ($\operatorname{Re} z<0$, $\operatorname{Im} z<0)$. Find the image of the \mathscr{D} under the principal logarithm function. (8 points)

Answer 5.

ÇANKAYA UNIVERSITY
Department of Mathematics and Computer Science

MCS 352-Complex Calculus

SECOND MIDTERM EXAMINATION
 30.04.2012

STUDENT NUMBER:

NAME-SURNAME:

SIGNATURE:

INSTRUCTOR: Seçil Gergün
DURATION: 110 minutes

Question	Grade	Out of
1		20
2		20
3		20
4		20
5		20
Total		100

IMPORTANT NOTES:

1) Please make sure that you have written your student number and name above.
2) Check that the exam paper contains 5 problems.
3) Show all your work. No points will be given to correct answers without reasonable work.

Question 1.

(a) Prove that

$$
\arccos z=-i \log \left(z+i\left(1-z^{2}\right)^{\frac{1}{2}}\right) .
$$

(10 points)
(b) Solve the equation $\cos z=\frac{3}{4} i$.
(10 points)

Answer 1.

Question 2.

(a) Evaluate the integral $\int_{C} \bar{z} d z$ where C is the part of the curve $y=x^{3}$ from $z_{1}=-2-8 i$ to $z_{2}=1+i$.
(10 points)
(b) Evaluate

$$
\int_{C} \log z d z
$$

where C is the line segment from 1 to $1+i$.

Answer 2.

Question 3.

(a) Let C be the circle $|z-i|=1$. Evaluate
(i) $\oint_{C} \frac{2 z}{z^{2}+1} d z$,
(5 points)
(ii) $\oint_{C} \sec z d z$.
(b) Let C be the circle $|z|=1$. Evaluate

$$
\oint_{C} \frac{z+3}{z^{3}+2 z^{2}} d z
$$

Answer 3.

Question 4.

(a) Find the Laurent series expansion of $f(z)=\frac{2}{-z^{2}+4 z-3}$ which is valid in $1<|z|<3$.
(10 points)
(b) Find the Maclaurin series of $f(z)=\cosh z$ and state where it is valid.
(10 points)

Answer 4.

Question 5.

(a) Locate the singularities of $f(z)=z e^{\frac{1}{z}}$ and determine their type.
(b) Locate the zeros and poles of $f(z)=\frac{z^{2}}{e^{z}-1}$ and determine their order.

Answer 5.

ÇANKAYA UNIVERSITY

Department of Mathematics and Computer Science

MCS 352-Complex Calculus

FINAL EXAMINATION

28.05.2012

STUDENT NUMBER:

NAME-SURNAME:

SIGNATURE:

INSTRUCTOR: Seçil Gergün
DURATION: 120 minutes

Question	Grade	Out of
1		20
2		20
3		20
4		20
5		20
Bonus		20
Total		120

IMPORTANT NOTES:

1) Please make sure that you have written your student number and name above.
2) Check that the exam paper contains 6 problems.
3) Show all your work. No points will be given to correct answers without reasonable work.

Question 1. In each part, find and classify all the isolated singularities of f and find the corresponding residues.
(a) $f(z)=\frac{1}{z^{7}-z^{9}}$.
(b) $f(z)=z^{3} \sin \frac{1}{z^{2}}$.
(c) $f(z)=\frac{e^{z}-1-z}{z^{2}}$.

Answer 1.

Question 2. In each part, evaluate
(a) $\oint_{|z|=2} \frac{e^{z}}{z^{2}-4 z+3} d z$.
(10 points)
(b) $\oint_{|z|=2} \frac{1}{\left(z^{2}-1\right)\left(z^{2}-2\right)\left(z^{2}-3\right)} d z$.

Answer 2.

Question 3. Evaluate

$$
\int_{0}^{2 \pi} \frac{\cos \theta}{5+3 \cos \theta} d \theta
$$

Answer 3.

Question 4. In each part, use residues to evaluate
(a) $\int_{0}^{\infty} \frac{1}{\left(x^{2}+1\right)^{2}} d x$.
(10 points)
(b) $\int_{-\infty}^{\infty} \frac{x \sin \pi x}{x^{2}+2 x+5} d x$.
(10 points)

Answer 4.

Question 5.

(a) Let $f(z)=\frac{\left(z^{2}+1\right)^{2}}{\left(z^{2}+2 z+2\right)^{3}}$. Evaluate $\frac{1}{2 \pi i} \oint_{|z|=4} \frac{f^{\prime}(z)}{f(z)} d z$.
(10 points)
(b) Prove that all the roots of $z^{7}-5 z^{3}+12=0$ lie between the circles $|z|=1$ and $|z|=2$.

Answer 5.

$\underline{\text { Bonus. Use residues to evaluate } \int_{0}^{\infty} \frac{d x}{x^{\frac{1}{3}}(1+x)}}$.
Answer.

