MCS 352 2009-2010 Spring Exercise Set IX

1. Prove that the following series converge uniformly on the sets indicated.

(a)
$$\sum_{k=1}^{\infty} \frac{1}{k^2} z^k$$
 on $\overline{D}_1(0) = \{z : |z| \le 1\}.$
(b) $\sum_{k=0}^{\infty} \frac{1}{(z^2 - 1)^k}$ on $\{z : |z| \ge 2\}.$
(c) $\sum_{k=0}^{\infty} \frac{z^k}{z^{2k} + 1}$ on $\overline{D}_r(0)$, where $0 < r < 1$.

- 2. By starting with the series for the complex cosine, choose an appropriate contour and use the termwise integration to obtain the series for the complex sine.
- 3. Suppose that the sequences of functions $\{f_n\}$ and $\{g_n\}$ converge uniformly on the set T.
 - (a) Show that the sequence $\{f_n + g_n\}$ converges uniformly on the set T.
 - (b) Show by example that it is not necessarily the case that $\{f_n g_n\}$ converges uniformly on the set T.
- 4. On what portion of $D_1(0)$ does the sequence $\{nz^n\}_{n=1}^{\infty}$ converge, and on what portion does it converge uniformly?

5. Consider the function
$$\zeta(z) = \sum_{n=1}^{\infty} n^{-z}$$
, where $n^{-z} = e^{-z \ln n}$

- (a) Show that $\zeta(z)$ converges uniformly on the set $A = \{z : \operatorname{Re}(z) \ge 2\}$.
- (b) Let D be a closed disk contained in $\{z : \operatorname{Re}(z) > 1\}$. Show that $\zeta(z)$ converges uniformly on D.
- 6. By computing derivatives, find the Maclaurin series for each function and state where it is valid.
 - (a) $\sinh z$.
 - (b) $\cosh z$.
 - (c) Log(1+z).
- 7. Using methods other than computing derivatives, find the Maclaurin series for
 - (a) $\cos^3 z$. *Hint*: Use the trigonometric identity $4\cos^3 z = \cos 3z + 3\cos z$.
 - (b) Arctan z. Hint: Choose an appropriate contour and integrate the Maclaurin series for $\frac{1}{1+z^2}$.
 - (c) $f(z) = (z^2 + 1) \sin z$.
 - (d) $f(z) = e^z \cos z$. *Hint*: $\cos z = \frac{1}{2}(e^{iz} + e^{iz})$, so $f(z) = \frac{1}{2}e^{(1+i)z} + \frac{1}{2}e^{(1-i)z}$. Now use the Maclaurin series for e^z .
- 8. Find the Taylor series centered at a = 1 and state where it converges for
 - (a) $f(z) = \frac{1-z}{z-2}$.

(b)
$$f(z) = \frac{1-z}{z-3}$$
.

9. Let $f(z) = \frac{\sin z}{z}$ and set f(0) = 1.

- (a) Explain why f is analytic at z = 0.
- (b) Find the Maclaurin series for f(z).
- (c) Find the Maclaurin series for $g(z) = \int_C f(\zeta) d\zeta$, where C is the straight-line segment from 0 to z.

10. Show that
$$f(z) = \frac{1}{1-z}$$
 has its Taylor series representation about the point $\alpha = i$ given by

$$f(z) = \sum_{n=0}^{\infty} \frac{(z-i)^n}{(1-i)^{n+1}},$$

for all $z \in D_{\sqrt{2}}(i) = \{z : |z - i| < \sqrt{2}\}.$

11. Let $f(z) = (1+z)^{\beta} = e^{\beta \log(1+z)}$ be the principal branch of $(1+z)^{\beta}$, where β is a fixed complex number. Establish the validity for $z \in D_1(0)$ of the binomial expansion

$$(1+z)^{\beta} = 1 + \beta z + \frac{\beta(\beta-1)}{2!}z^2 + \frac{\beta(\beta-1)(\beta-2)}{3!}z^3 + \cdots$$
$$= 1 + \sum_{n=1}^{\infty} \frac{\beta(\beta-1)(\beta-2)\cdots(\beta-n+1)}{n!}z^n.$$

12. Find $f^{(3)}(0)$ for

(a)
$$f(z) = \sum_{n=0}^{\infty} (3 + (-1)^n)^n z^n$$
.
(b) $g(z) = \sum_{n=1}^{\infty} \frac{(1+i)^n}{n} z^n$.
(c) $h(z) = \sum_{n=0}^{\infty} \frac{z^n}{(\sqrt{3}+i)^n}$.

13. Suppose that $f(z) = \sum_{n=0}^{\infty} c_n z^n$ is an entire function.

- (a) Find a series representation for $\overline{f(\overline{z})}$, using powers of \overline{z} .
- (b) Show that $\overline{f(\overline{z})}$ is an entire function.
- (c) Does $\overline{f(\overline{z})} = f(z)$? Why or why not?

14. Let $f(z) = \sum_{n=0}^{\infty} c_n z^n = 1 + z + 2z^2 + 3z^3 + 5z^4 + 8z^5 + 13z^6 + \cdots$, where the coefficients c_n are the Fibonacci numbers defined by $c_0 = 1$, $c_1 = 1$, and $c_n = c_{n-1} + c_{n-2}$, for $n \ge 2$.

- (a) Show that $f(z) = \frac{1}{1 z z^2}$, for all $z \in D_R(0)$ for some number R.
- (b) Find the value of R in part (a) for which the series representation is valid.
- 15. Use the Maclaurin series and the Cauchy product to verify that $\sin 2z = 2 \cos z \sin z$ up to terms involving z^5 .
- 16. Compute the Taylor series for the principal logarithm f(z) = Log z expanded about the center $z_0 = -1 + i$.

17. The Fresnel integrals C(z) and S(z) are defined by

$$C(z) = \int_0^z \cos(\xi^2) \, d\xi$$
 and $S(z) = \int_0^z \sin(\xi^2) \, d\xi$

We define F(z) by F(z) = C(z) + iS(z).

- (a) Verify the identity $F(z) = \int_0^z e^{i\xi^2} d\xi$.
- (b) Integrate the power series for $e^{i\xi^2}$ and obtain the power series for F(z).
- (c) Use the partial sum involving terms up to z^9 to find approximations to C(1.0) and S(1.0).
- 18. Let f be defined in a domain that contains the origin. The function f is said to be even if f(-z) = f(z), and it is called odd if f(-z) = -f(z).
 - (a) Show that the derivative of an odd function is an even function.
 - (b) Show that the derivative of an even function is an odd function.
 - (c) If f is even, show that all the coefficients of the odd powers of z in the Maclaurin series are zero.
 - (d) If f is odd, show that all the coefficients of the even powers of z in the Maclaurin series are zero.

19. Find two Laurent series expansions for $f(z) = \frac{1}{z^3 - z^4}$ that involve powers of z.

20. Show that
$$f(z) = \frac{1}{1-z}$$
 has a Laurent series representation about the point $z_0 = i$ given by

$$f(z) = \frac{1}{1-z} = -\sum_{n=1}^{\infty} \frac{(1-i)^{n-1}}{(z-i)^n}$$
 valid for $|z-i| > \sqrt{2}$).

21. Find the Laurent series for $f(z) = \frac{\sin 2z}{z^4}$ that involves powers of z.

- 22. Show that $\frac{1-z}{z-2} = -\sum_{n=0}^{\infty} \frac{1}{(z-1)^n}$ is valid for |z-1| > 1.
- 23. Find the Laurent series for $\sin\left(\frac{1}{z}\right)$ centered at $\alpha = 0$. Where is the series valid?

24. Show that
$$\frac{1-z}{z-3} = -\sum_{n=0}^{\infty} \frac{2^n}{(z-1)^n}$$
 is valid for $|z-1| > 2$.

- 25. Find the Laurent series for $f(z) = \frac{\cosh z \cos z}{z^5}$ that involves powers of z.
- 26. Find the Laurent series for $f(z) = \frac{1}{z^4(1-z)^2}$ that involves powers of z and is valid for |z| > 1.
- 27. Find two Laurent series for $z^{-1}(4-z)^{-2}$ involving powers of z and state where they are valid.
- 28. Find three Laurent series for $(z^2 5z + 6)^{-1}$ centered at $\alpha = 0$.
- 29. Find the Laurent series for $\operatorname{Log}\left(\frac{z-a}{z-b}\right)$, where a and b are positive real numbers with b > a > 1, and state where the series is valid. *Hint*: For these conditions, show that $\operatorname{Log}\left(\frac{z-a}{z-b}\right) = \operatorname{Log}\left(1-\frac{a}{z}\right) \operatorname{Log}\left(1-\frac{b}{z}\right)$.
- 30. Can Log z be represented by a Maclaurin series or a Laurent series about the point $\alpha = 0$? Explain your answer.
- 31. Use the Maclaurin series for $\sin z$ and then long division to get the Laurent series for $\csc z$ with $\alpha = 0$.

- 32. Show that $\cosh\left(z+\frac{1}{z}\right) = \sum_{n=-\infty}^{\infty} a_n z^n$, where the coefficients can be expressed in the form $a_n = \frac{1}{2\pi} \int_0^{2\pi} \cos n\theta \cosh(2\cos\theta) \, d\theta$. *Hint*: Let the path of integration be the circle $C_1(0)$.
- 33. Consider the real-valued function $u(\theta) = \frac{1}{5 4\cos\theta}$.
 - (a) Use the substitution $\cos \theta = \frac{1}{2} \left(z + \frac{1}{z} \right)$ and obtain

$$u(\theta) = f(z) = \frac{-z}{(z-2)(2z-1)}$$

- (b) Expand the function f(z) in part (a) in a Laurent series that is valid in the annulus $A(0, \frac{1}{2}, 2)$.
- (c) Use the substitution $\cos n\theta = \frac{1}{2}(z^n + z^{-n})$ in part (b) and obtain the Fourier series for $(\theta): u(\theta) = \frac{1}{3} + \frac{1}{3}\sum_{n=1}^{\infty} 2^{-n+1}\cos(n\theta).$
- 34. The Bessel function $J_n(z)$ is sometimes defined by the generating function

$$\exp\left[\frac{z}{2}\left(t-\frac{1}{t}\right)\right] = \sum_{n=-\infty}^{\infty} J_n(z)t^n$$

Use the circle $C_1(0)$ as the contour of integration and show that

$$J_n(z) = \frac{1}{\pi} \int_0^{\pi} \cos(n\theta - z\sin\theta) \, d\theta.$$

35. Suppose that the Laurent expansion $f(z) = \sum_{n=-\infty}^{\infty} a_n z^n$ converges in the annulus $A(0, r_1, r_2)$, where $r_1 < 1 < r_2$. Consider the real-valued function $u(\theta) = f(e^{i\theta})$ and show that $u(\theta)$ has the Fourier series expansion

$$u(\theta) = f(e^{i\theta}) = \sum_{n=-\infty}^{\infty} a_n e^{in\theta},$$

where

$$a_n = \frac{1}{2\pi} \int_0^{2\pi} e^{-in\phi} f(e^{i\phi}) \, d\phi.$$

36. Locate the zeros of the following functions and determine their order.

(a) $(1 + z^2)^4$. (b) $\sin^2 z$. (c) $z^2 + 2z + 2$. (d) $\sin z^2$. (e) $z^4 + 10z^2 + 9$. (f) $1 + e^z$. (g) $z^6 + 1$. (h) $z^3 e^{z-1}$. (i) $z^6 + 2z^3 + 1$. (j) $z^3 \cos^2 z$. (k) $z^8 + z^4$. (l) $z^2 \cosh z$.

37. Locate the poles of the following functions and determine their order.

(a)
$$(z^{2} + 1)^{-3}(z - 1)^{-4}$$
.
(b) $z^{-1}(z^{2} - 2z + 2)^{-2}$.
(c) $(z^{6} + 1)^{-1}$.
(d) $(z^{4} + z^{3} - 2z^{2})^{-1}$.
(e) $(3z^{4} + 10z^{2} + 3)^{-1}$.
(f) $\left(i + \frac{2}{z}\right)^{-1} \left(3 + \frac{4}{z}\right)^{-1}$.
(g) $z \cot z$.
(h) $z^{-5} \sin z$.
(i) $(z^{2} \sin z)^{-1}$.
(j) $z^{-1} \csc z$.
(k) $(1 - e^{z})^{-1}$.
(l) $z^{-5} \sinh z$.

38. Locate the singularities of the following functions and determine their type.

(a)
$$\frac{z^2}{z - \sin z}$$
.
(b)
$$\sin\left(\frac{1}{z}\right)$$
.
(c)
$$ze^{\frac{1}{z}}$$
.
(d)
$$\tan z$$

(e)
$$(z^2 + z)^{-1} \sin z$$
.
(f)
$$\frac{z}{\sin z}$$
.
(g)
$$\frac{e^z - 1}{z}$$
.
(h)
$$\frac{\cos z - \cos(2z)}{z^4}$$
.

0

- 39. Suppose that f has a removable singularity at z_0 . Show that the function $\frac{1}{f}$ has either a removable singularity or a pole at z_0 .
- 40. Let f be analytic and have zero of order k at z_0 . Show that f' has a zero of order k-1 at z_0 .
- 41. Let f and g be analytic at z_0 and have zeros of order m and n, respectively, at z_0 . What can you say about the zero of f + g at z_0 ?
- 42. Let f and g have poles of order m and n, respectively, at z_0 . Show that f + g has either a pole or a removable singularity at z_0 .
- 43. Let f be analytic and have a zero of order k at z_0 . Show that the function $\frac{f'}{f}$ has a simple pole at z_0 .
- 44. Let f have a pole of order k at z_0 . Show that f' has a pole of order k + 1 at z_0 .
- 45. Find the singularities of the following functions.

(a)
$$\frac{1}{\sin\left(\frac{1}{z}\right)}$$
.
(b) $\log z^2$.
(c) $\cot z - \frac{1}{z}$

46. Determine whether there exists a function f that is analytic at 0 such that for n = 1, 2, 3, ...,

(a)
$$f\left(\frac{1}{2n}\right) = 0$$
 and $f\left(\frac{1}{2n-1}\right) = 0$.
(b) $f\left(\frac{1}{n}\right) = f\left(-\frac{1}{n}\right) = \frac{1}{n^2}$.
(c) $f\left(\frac{1}{n}\right) = f\left(-\frac{1}{n}\right) = \frac{1}{n^3}$.

- 47. Consider the function $f(z) = z \sin\left(\frac{1}{z}\right)$.
 - (a) Show that there is a sequence $\{z_n\}$ of points converging to 0 such that $f(z_n) = 0$ for n = 1, 2, 3, ...
 - (b) Does this result contradict the following result? Why or why not?
 Suppose that f is analytic in the domain D and that α ∈ D. If there exists a sequence of points {z_n} in D such that z_n → α, and f(z_n) = 0, then f(z) = 0 for all z ∈ D.
- 48. Let $f(z) = \tan z$.
 - (a) Find the first few terms of the Maclaurin series for f(z) if $|z| < \frac{\pi}{2}$.
 - (b) What are the values of $f^{(6)}(0)$ and $f^{(7)}(0)$?
- 49. Show that the real function f defined by

$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & \text{when } x \neq 0\\ 0 & \text{when } x = 0 \end{cases}$$

is continuous at x = 0 but the corresponding function g(z) defined by

$$g(z) = \begin{cases} z \sin\left(\frac{1}{z}\right) & \text{when } z \neq 0\\ 0 & \text{when } z = 0 \end{cases}$$

is not continuous at z = 0.

50. Use L'Hôpital's rule to find the following limits.

(a)
$$\lim_{z \to 1+i} \frac{z - 1 - i}{z^4 + 4}.$$

(b)
$$\lim_{z \to i} \frac{z^2 - 2iz - 1}{z^4 + 2z^2 + 1}.$$

(c)
$$\lim_{z \to i} \frac{1 + z^6}{1 + z^2}.$$

(d)
$$\lim_{z \to 0} \frac{\sin z + \sinh z - 2z}{z^5}.$$