# MCS 352 2009-2010 Spring <br> Exercise Set VII 

1. Evaluate the following integrals
(a) $\int_{1}^{2}\left(\frac{1}{t}-i\right)^{2} d t$.
(b) $\int_{0}^{\frac{\pi}{6}} e^{i 2 t} d t$.
2. Compute $\int_{\gamma} x d z$ where $\gamma$ is the directed line segment from 0 to $1+i$.
3. Evaluate $\int_{C} f(z) d z$ where $f(z)=x^{2}+i y^{2}$ and $C$ is given by
(a) $z(t)=t+i t, 0 \leq t \leq 1$.
(b) $z(t)=t^{2}+i t^{2}, 0 \leq t \leq 1$.
4. Evaluate $\int_{C} f(z) d z$ where $f(z)=\frac{1}{z}$ and $C$ is given by
(a) $z(t)=R \cos t+i R \sin t, 0 \leq t \leq 2 \pi, R>0$.
(b) $z(t)=\sin t+i \cos t, 0 \leq t \leq 2 \pi$.
5. Show that, if $f$ is a continuous real-valued function and $|f| \leq 1$, then

$$
\left|\int_{C} f(z) d z\right| \leq 4
$$

where $C=\{z:|z|=1\}$. Hint: Show that $\left|\int_{C} f(z) d z\right| \leq \int_{0}^{2 \pi}|\sin t| d t$.
6. Use parametric representations for $C$, or legs of $C$, to evaluate $\int_{C} f(z) d z$, if
(a) $f(z)=\frac{z+2}{z}$ and $C$ is
i. the semicircle $z=2 e^{i \theta}, 0 \leq \theta \leq \pi$.
ii. the semicircle $z=2 e^{i \theta}, \pi \leq \theta \leq 2 \pi$.
iii. the circle $z=2 e^{i \theta}, 0 \leq \theta \leq 2 \pi$.
(b) $f(z)=z-1$ and $C$ is the arc from $z=0$ to $z=2$ consisting of
i. the semicircle $z=1+e^{i \theta}, \pi \leq \theta \leq 2 \pi$.
ii. the segment $0 \leq x \leq 2$ of the real axis.
(c) $f(z)=\pi e^{\pi \bar{z}}$ and $C$ is the boundary of the square with vertices at the points $0,1,1+i$, and $i$, the orientation of $C$ being in the counterclockwise direction.
(d) $f(z)$ is defined by the equations

$$
f(z)=\left\{\begin{array}{cc}
1 & \text { when } \quad y<0 \\
4 y & \text { when } \quad y>0
\end{array}\right.
$$

and $C$ is the arc from $z=-1-i$ to $z=1+i$ along the curve $y=x^{3}$.
(e) $f(z)=1$ and $C$ is an arbitrary contour from any fixed point $z_{1}$ to any fixed point $z_{2}$ in the plane.
(f) $f(z)$ is the branch

$$
z^{-1+i}=\exp ((-1+i) \log z), \quad|z|>0,0<\arg z<2 \pi
$$

of the indicated power function, and $C$ is the positively oriented unit circle $|z|=1$.
7. With the aid of the result in Exercise 2, Set VI, evaluate the integral

$$
\int_{C} z^{m} \bar{z}^{n} d z
$$

where $m$ and $n$ are integers and $C$ is the unit circle $|z|=1$, taken counterclockwise.
8. Evaluate the integral $\int_{C} \bar{z} d z$ where $C$ is the part of the circle $|z|=2$ in the right half-plane from $z=-2 i$ to $z=2 i$, by using the parametrization
(a) $z=2 e^{i \theta}, \quad-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$.
(b) $z=\sqrt{4-y^{2}}+i y, \quad-2 \leq y \leq 2$.
9. Let $C$ and $C_{0}$ denote the circles $z=R e^{i \theta}, 0 \leq \theta \leq 2 \pi$ and $z=z_{0}+R e^{i \theta}, 0 \leq \theta \leq 2 \pi$, respectively. Use these parametric representations to show that

$$
\int_{C} f(z) d z=\int_{C_{0}} f\left(z-z_{0}\right) d z
$$

when $f$ is piecewise continuous on $C$.
10. Show that

$$
\int_{C_{R}\left(z_{0}\right)}\left(z-z_{0}\right)^{a-1} d z=i \frac{2 R^{a}}{a} \sin (a \pi),
$$

where $C_{R}\left(z_{0}\right)=\left\{z:\left|z-z_{0}\right|=R\right\}$ and $a$ is any real number other than zero and the principal branch of the integrand and the principal value of $R^{a}$ are taken.
11. Without evaluating the integral, show that

$$
\left|\int_{C} \frac{d z}{z^{2}-1}\right| \leq \frac{\pi}{3}
$$

where $C$ is the arc of the circle $|z|=2$ from $z=2$ to $z=2 i$ that lies in the first quadrant.
12. Let $C$ denote the line segment from $z=i$ to $z=1$. By observing that, of all the points on that line segment, the midpoint is the closest to the origin, show that

$$
\left|\int_{C} \frac{d z}{z^{4}}\right| \leq 4 \sqrt{2}
$$

without evaluating the integral.
13. Show that if $C$ is the boundary of the triangle with vertices at the points $0,3 i$, and -4 , oriented in the counterclockwise direction, then

$$
\left|\int_{C}\left(e^{z}-\bar{z}\right) d z\right| \leq 60
$$

14. Let $C_{R}$ denote the upper half of the circle $|z|=R, R>2$, taken in the counterclockwise direction. Show that

$$
\left|\int_{C_{R}} \frac{2 z^{2}-1}{z^{4}+5 z^{2}+4} d z\right| \leq \frac{\pi R\left(2 R^{2}+1\right)}{\left(R^{2}-1\right)\left(R^{2}-4\right)}
$$

Then, by dividing the numerator and denominator on the right here by $R^{4}$, show that the value of the integral tends to zero as $R$ tends to infinity.
15. Let $C_{R}$ be the circle $|z|=R, R>1$, described in the counterclockwise direction. Show that

$$
\left|\int_{C_{R}} \frac{\log z}{z^{2}} d z\right|<2 \pi\left(\frac{\pi+\ln R}{R}\right)
$$

and then use l'Hospital's rule to show that the value of this integral tends to zero as $R$ tends to infinity.
16. Let $C_{\rho}$ denote the circle $|z|=\rho, 0<\rho<1$, oriented in the counterclockwise direction, and suppose that $f(z)$ is analytic in the disk $|z| \leq 1$. Show that if $z^{-\frac{1}{2}}$ represents any particular branch of that power of $z$, then there is a nonnegative constant $M$, independent of $\rho$, such that

$$
\left|\int_{C_{\rho}} z^{-\frac{1}{2}} f(z) d z\right| \leq 2 \pi M \sqrt{\rho}
$$

Thus show that the value of the integral here approaches 0 as $\rho$ tends to 0 .
17. Let $C_{N}$ denote the boundary of the square formed by the lines

$$
x= \pm\left(N+\frac{1}{2}\right) \pi \quad \text { and } \quad y= \pm\left(N+\frac{1}{2}\right) \pi
$$

where $N$ is a positive integer, and let the orientation of $C_{N}$ be counterclockwise.
(a) With the aid of the inequalities

$$
|\sin z| \geq|\sin x| \quad \text { and } \quad|\sin z| \geq|\sinh y|
$$

show that $|\sin z| \geq 1$ on the vertical sides of the square and that $|\sin z|>\sinh \frac{\pi}{2}$ on the horizontal sides. Thus show that there is a positive constant $A$, independent of $N$, such that $|\sin z| \geq A$ for all points $z$ lying on the contour $C_{N}$.
(b) Using the final result in part (a), show that

$$
\left|\int_{C_{N}} \frac{d z}{z^{2} \sin z} d z\right| \leq \frac{16}{(2 N+1) \pi A}
$$

and hence that the value of this integral tends to zero as $N$ tends to infinity.
18. Compute $\int_{|z|=r} x d z$ for the positive sense of the circle in two ways: first, by use of a parameter, and second, by observing that $x=\frac{1}{2}(z+\bar{z})=\frac{1}{2}\left(z+\frac{r^{2}}{z}\right)$ on the circle.
19. Compute $\int_{|z|=2} \frac{d z}{z^{2}-1}$ for the positive sense of the circle.
20. Apply the Cauchy-Goursat theorem to show that

$$
\int_{C} f(z) d z=0
$$

when the contour $C$ is the circle $|z|=1$, in either direction, and when
(a) $f(z)=\frac{z^{2}}{z-3}$.
(b) $f(z)=z e^{-z}$.
(c) $f(z)=\frac{1}{z^{2}+2 z+2}$.
(d) $f(z)=\operatorname{sech} z$.
(e) $f(z)=\tan z$.
(f) $f(z)=\log (z+2)$.
21. Let $C_{1}$ denote the positively oriented circle $|z|=4$ and $C_{2}$ the positively oriented boundary of the square whose sides lie along the lines $x= \pm 1$ and $y= \pm 1$. With the aid of "deformation of contour" theorem, point out why

$$
\oint_{C_{1}} f(z) d z=\oint_{C_{2}} f(z) d z
$$

when
(a) $f(z)=\frac{1}{3 z^{2}+1}$.
(b) $f(z)=\frac{z+2}{\sin \frac{z}{2}}$.
(c) $f(z)=\frac{z}{1-e^{z}}$.
22. Use the method described below to derive the integration formula

$$
\int_{0}^{\infty} e^{-x^{2}} \cos 2 b x d x=\frac{\sqrt{\pi}}{2} e^{-b^{2}}, b>0
$$

(a) Show that the sum of the integrals of $e^{-z^{2}}$ along the lower and upper horizontal legs of the rectangular path in the figure below can be written

$$
2 \int_{0}^{a} e^{-x^{2}} d x-2 e^{b^{2}} \int_{0}^{a} e^{-x^{2}} \cos 2 b x d x
$$

and that the sum of the integrals along the vertical legs on the right and left can be written

$$
i e^{-a^{2}} \int_{0}^{b} e^{y^{2}} e^{-i 2 a y} d y-i e^{-a^{2}} \int_{0}^{b} e^{y^{2}} e^{i 2 a y} d y
$$

Thus, with the aid of the Cauchy-Goursat theorem, show that

$$
\int_{0}^{a} e^{-x^{2}} \cos 2 b x d x=e^{-b^{2}} \int_{0}^{a} e^{-x^{2}} d x+e^{-\left(a^{2}+b^{2}\right)} \int_{0}^{b} e^{y^{2}} \sin 2 a y d y
$$


(b) By accepting the fact that

$$
\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}
$$

and observing that

$$
\left|\int_{0}^{b} e^{y^{2}} \sin 2 a y d y\right|<\int_{0}^{b} e^{y^{2}} d y
$$

obtain the desired integration formula by letting $a$ tend to infinity in the equation at the end of part (a).
23. Show that the path $C_{1}$ from the origin to the point $z=1$ along the graph of the function defined by means of the equations

$$
y(x)=\left\{\begin{array}{ccc}
x^{3} \sin \frac{\pi}{x} & \text { when } & 0<x \leq 1 \\
0 & \text { when } & x=0
\end{array}\right.
$$

is a smooth arc that intersects the real axis an infinite number of times. Let $C_{2}$ denote the line segment along the real axis from $z=1$ back to origin, and let $C_{3}$ denote any smooth arc from the origin to $z=1$ that does not intersect itself and has only its end points in common with the $\operatorname{arcs} C_{1}$ and $C_{2}$ (see the figure below). Apply the Cauchy-Goursat theorem to show that if a function $f$ is entire, then

$$
\int_{C_{1}} f(z) d z=\int_{C_{3}} f(z) d z \text { and } \int_{C_{2}} f(z) d z=-\int_{C_{3}} f(z) d z
$$



Conclude that, even though the closed contour $C=C_{1}+C_{2}$ intersects itself an infinite number of times,

$$
\int_{C} f(z) d z=0
$$

24. Let $C$ denote the positively oriented boundary of the half disk $0 \leq r \leq 1,0 \leq \theta \leq \pi$, and let $f(z)$ be a continuous function defined on that half disk by writing $f(0)=0$ and using the branch

$$
f(z)=\sqrt{r} e^{i \frac{\theta}{2}}, \quad r>0,-\frac{\pi}{2}<\theta<\frac{3 \pi}{2}
$$

of the multi-valued function $z^{\frac{1}{2}}$. Show that

$$
\int_{C} f(z) d z=0
$$

by evaluating separately the integrals of $f(z)$ over the semicircle and the two radii which make up $C$. Why does the Cauchy-Goursat theorem not apply here?
25. Show that if $C$ is a positively oriented simple closed contour, then the area of the region enclosed by $C$ can be written

$$
\frac{1}{2 i} \oint_{C} \bar{z} d z
$$

26. Evaluate $\int_{C}(z-i) d z$ where $C$ is the parabolic segment:

$$
z(t)=t+i t^{2}, \quad-1 \leq t \leq 1
$$

(a) by applying the integral formula involving an antiderivative of the integrand.
(b) by integrating along the straight line from $-1+i$ to $1+i$ and applying the Cauchy-Goursat Theorem.
27. Use an antiderivative to show that, for every contour $C$ extending from a point $z_{1}$ to a point $z_{2}$,

$$
\int_{C} z^{n} d z=\frac{1}{n+1}\left(z_{2}^{n+1}-z_{1}^{n+1}\right), \quad n=0,1,2, \cdots
$$

28. By finding an antiderivative, evaluate each of these integrals, where the path is any contour between the indicated limits of integration:
(a) $\int_{i}^{\frac{i}{2}} e^{\pi z} d z$.
(b) $\int_{0}^{\pi+2 i} \cos \frac{z}{2} d z$.
(c) $\int_{1}^{3}(z-2)^{3} d z$.
29. Evaluate the integral $\oint_{C} z^{\frac{1}{2}} d z$, where the integrand is the branch

$$
z^{\frac{1}{2}}=\sqrt{r} e^{i \frac{\theta}{2}}, \quad r>0,0<\theta<2 \pi
$$

of the square root function and $C=C_{2}-C_{1}$ is the contour shown below.

30. Show that

$$
\int_{-1}^{1} z^{i} d z=\frac{1+e^{-\pi}}{2}(1-i)
$$

where $z^{i}$ denotes the principal branch

$$
z^{i}=e^{i \log z}, \quad|z|>0,-\pi<\operatorname{Arg} z<\pi
$$

and where the path of integration is any contour from $z=-1$ to $z=1$ that, except for its end points, lies above the real axis.

