
MCS 352 2009-2010 Spring

Exercise Set VII

1. Evaluate the following integrals

(a)
ˆ 2

1

(
1
t
− i
)2

dt.

(b)
ˆ π

6

0

ei2t dt.

2. Compute
ˆ
γ

x dz where γ is the directed line segment from 0 to 1 + i.

3. Evaluate
ˆ
C

f(z) dz where f(z) = x2 + iy2 and C is given by

(a) z(t) = t+ it, 0 ≤ t ≤ 1.

(b) z(t) = t2 + it2, 0 ≤ t ≤ 1.

4. Evaluate
ˆ
C

f(z) dz where f(z) =
1
z

and C is given by

(a) z(t) = R cos t+ iR sin t, 0 ≤ t ≤ 2π, R > 0.

(b) z(t) = sin t+ i cos t, 0 ≤ t ≤ 2π.

5. Show that, if f is a continuous real-valued function and |f | ≤ 1, then∣∣∣∣ˆ
C

f(z) dz
∣∣∣∣ ≤ 4,

where C = {z : |z| = 1}. Hint : Show that
∣∣´
C
f(z) dz

∣∣ ≤ ´ 2π

0
| sin t| dt.

6. Use parametric representations for C, or legs of C, to evaluate
ˆ
C

f(z) dz, if

(a) f(z) =
z + 2
z

and C is

i. the semicircle z = 2eiθ, 0 ≤ θ ≤ π.
ii. the semicircle z = 2eiθ, π ≤ θ ≤ 2π.
iii. the circle z = 2eiθ, 0 ≤ θ ≤ 2π.

(b) f(z) = z − 1 and C is the arc from z = 0 to z = 2 consisting of

i. the semicircle z = 1 + eiθ, π ≤ θ ≤ 2π.
ii. the segment 0 ≤ x ≤ 2 of the real axis.

(c) f(z) = πeπz̄ and C is the boundary of the square with vertices at the points 0, 1, 1+i, and i, the orientation
of C being in the counterclockwise direction.



(d) f(z) is defined by the equations

f(z) =
{

1 when y < 0
4y when y > 0,

and C is the arc from z = −1− i to z = 1 + i along the curve y = x3.

(e) f(z) = 1 and C is an arbitrary contour from any fixed point z1 to any fixed point z2 in the plane.

(f) f(z) is the branch
z−1+i = exp((−1 + i) log z), |z| > 0, 0 < arg z < 2π

of the indicated power function, and C is the positively oriented unit circle |z| = 1.

7. With the aid of the result in Exercise 2, Set VI, evaluate the integral
ˆ
C

zmzn dz,

where m and n are integers and C is the unit circle |z| = 1, taken counterclockwise.

8. Evaluate the integral
ˆ
C

z dz where C is the part of the circle |z| = 2 in the right half-plane from z = −2i to

z = 2i, by using the parametrization

(a) z = 2eiθ, −π
2
≤ θ ≤ π

2
.

(b) z =
√

4− y2 + iy, −2 ≤ y ≤ 2.

9. Let C and C0 denote the circles z = Reiθ, 0 ≤ θ ≤ 2π and z = z0 + Reiθ, 0 ≤ θ ≤ 2π, respectively. Use these
parametric representations to show that

ˆ
C

f(z) dz =
ˆ
C0

f(z − z0) dz

when f is piecewise continuous on C.

10. Show that ˆ
CR(z0)

(z − z0)a−1 dz = i
2Ra

a
sin(aπ),

where CR(z0) = {z : |z − z0| = R} and a is any real number other than zero and the principal branch of the
integrand and the principal value of Ra are taken.

11. Without evaluating the integral, show that ∣∣∣∣ˆ
C

dz

z2 − 1

∣∣∣∣ ≤ π

3

where C is the arc of the circle |z| = 2 from z = 2 to z = 2i that lies in the first quadrant.

12. Let C denote the line segment from z = i to z = 1. By observing that, of all the points on that line segment,
the midpoint is the closest to the origin, show that∣∣∣∣ˆ

C

dz

z4

∣∣∣∣ ≤ 4
√

2

without evaluating the integral.

13. Show that if C is the boundary of the triangle with vertices at the points 0, 3i, and −4, oriented in the
counterclockwise direction, then ∣∣∣∣ˆ

C

(ez − z̄) dz
∣∣∣∣ ≤ 60.
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14. Let CR denote the upper half of the circle |z| = R, R > 2, taken in the counterclockwise direction. Show that∣∣∣∣ˆ
CR

2z2 − 1
z4 + 5z2 + 4

dz

∣∣∣∣ ≤ πR(2R2 + 1)
(R2 − 1)(R2 − 4)

.

Then, by dividing the numerator and denominator on the right here by R4, show that the value of the integral
tends to zero as R tends to infinity.

15. Let CR be the circle |z| = R, R > 1, described in the counterclockwise direction. Show that∣∣∣∣ˆ
CR

Log z
z2

dz

∣∣∣∣ < 2π
(
π + lnR

R

)
and then use l’Hospital’s rule to show that the value of this integral tends to zero as R tends to infinity.

16. Let Cρ denote the circle |z| = ρ, 0 < ρ < 1, oriented in the counterclockwise direction, and suppose that f(z) is
analytic in the disk |z| ≤ 1. Show that if z−

1
2 represents any particular branch of that power of z, then there is

a nonnegative constant M , independent of ρ, such that∣∣∣∣∣
ˆ
Cρ

z−
1
2 f(z) dz

∣∣∣∣∣ ≤ 2πM
√
ρ.

Thus show that the value of the integral here approaches 0 as ρ tends to 0.

17. Let CN denote the boundary of the square formed by the lines

x = ±
(
N +

1
2

)
π and y = ±

(
N +

1
2

)
π,

where N is a positive integer, and let the orientation of CN be counterclockwise.

(a) With the aid of the inequalities

| sin z| ≥ | sinx| and | sin z| ≥ | sinh y|,

show that | sin z| ≥ 1 on the vertical sides of the square and that | sin z| > sinh
π

2
on the horizontal sides.

Thus show that there is a positive constant A, independent of N , such that | sin z| ≥ A for all points z lying
on the contour CN .

(b) Using the final result in part (a), show that∣∣∣∣ˆ
CN

dz

z2 sin z
dz

∣∣∣∣ ≤ 16
(2N + 1)πA

and hence that the value of this integral tends to zero as N tends to infinity.

18. Compute
ˆ
|z|=r

x dz for the positive sense of the circle in two ways: first, by use of a parameter, and second, by

observing that x =
1
2

(z + z̄) =
1
2

(
z +

r2

z

)
on the circle.

19. Compute
ˆ
|z|=2

dz

z2 − 1
for the positive sense of the circle.

20. Apply the Cauchy-Goursat theorem to show that
ˆ
C

f(z) dz = 0

when the contour C is the circle |z| = 1, in either direction, and when
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(a) f(z) =
z2

z − 3
.

(b) f(z) = ze−z.

(c) f(z) =
1

z2 + 2z + 2
.

(d) f(z) = sech z.
(e) f(z) = tan z.
(f) f(z) = Log(z + 2).

21. Let C1 denote the positively oriented circle |z| = 4 and C2 the positively oriented boundary of the square whose
sides lie along the lines x = ±1 and y = ±1. With the aid of “deformation of contour” theorem, point out why‰

C1

f(z) dz =
‰
C2

f(z) dz

when

(a) f(z) =
1

3z2 + 1
.

(b) f(z) =
z + 2
sin z

2

.

(c) f(z) =
z

1− ez
.

22. Use the method described below to derive the integration formulaˆ ∞
0

e−x
2

cos 2bx dx =
√
π

2
e−b

2
, b > 0.

(a) Show that the sum of the integrals of e−z
2

along the lower and upper horizontal legs of the rectangular
path in the figure below can be written

2
ˆ a

0

e−x
2
dx− 2eb

2
ˆ a

0

e−x
2

cos 2bx dx

and that the sum of the integrals along the vertical legs on the right and left can be written

ie−a
2
ˆ b

0

ey
2
e−i2ay dy − ie−a

2
ˆ b

0

ey
2
ei2ay dy.

Thus, with the aid of the Cauchy-Goursat theorem, show that
ˆ a

0

e−x
2

cos 2bx dx = e−b
2
ˆ a

0

e−x
2
dx+ e−(a2+b2)

ˆ b

0

ey
2

sin 2ay dy.

(b) By accepting the fact that ˆ ∞
0

e−x
2
dx =

√
π

2
and observing that ∣∣∣∣∣

ˆ b

0

ey
2

sin 2ay dy

∣∣∣∣∣ <
ˆ b

0

ey
2
dy,

obtain the desired integration formula by letting a tend to infinity in the equation at the end of part (a).
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23. Show that the path C1 from the origin to the point z = 1 along the graph of the function defined by means of
the equations

y(x) =

{
x3 sin

π

x
when 0 < x ≤ 1,

0 when x = 0

is a smooth arc that intersects the real axis an infinite number of times. Let C2 denote the line segment along
the real axis from z = 1 back to origin, and let C3 denote any smooth arc from the origin to z = 1 that does not
intersect itself and has only its end points in common with the arcs C1 and C2 (see the figure below). Apply the
Cauchy-Goursat theorem to show that if a function f is entire, then

ˆ
C1

f(z) dz =
ˆ
C3

f(z) dz and
ˆ
C2

f(z) dz = −
ˆ
C3

f(z) dz.

Conclude that, even though the closed contour C = C1 + C2 intersects itself an infinite number of times,
ˆ
C

f(z) dz = 0.

24. Let C denote the positively oriented boundary of the half disk 0 ≤ r ≤ 1, 0 ≤ θ ≤ π, and let f(z) be a continuous
function defined on that half disk by writing f(0) = 0 and using the branch

f(z) =
√
rei

θ
2 , r > 0, −π

2
< θ <

3π
2
,

of the multi-valued function z
1
2 . Show that ˆ

C

f(z) dz = 0.

by evaluating separately the integrals of f(z) over the semicircle and the two radii which make up C. Why does
the Cauchy-Goursat theorem not apply here?

25. Show that if C is a positively oriented simple closed contour, then the area of the region enclosed by C can be
written

1
2i

‰
C

z̄ dz.

26. Evaluate
ˆ
C

(z − i) dz where C is the parabolic segment:

z(t) = t+ it2, −1 ≤ t ≤ 1

(a) by applying the integral formula involving an antiderivative of the integrand.

(b) by integrating along the straight line from −1 + i to 1 + i and applying the Cauchy-Goursat Theorem.

27. Use an antiderivative to show that, for every contour C extending from a point z1 to a point z2,
ˆ
C

zn dz =
1

n+ 1
(zn+1

2 − zn+1
1 ), n = 0, 1, 2, · · · .
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28. By finding an antiderivative, evaluate each of these integrals, where the path is any contour between the indicated
limits of integration:

(a)
ˆ i

2

i

eπz dz.

(b)
ˆ π+2i

0

cos
z

2
dz.

(c)
ˆ 3

1

(z − 2)3 dz.

29. Evaluate the integral
‰
C

z
1
2 dz, where the integrand is the branch

z
1
2 =
√
rei

θ
2 , r > 0, 0 < θ < 2π,

of the square root function and C = C2 − C1 is the contour shown below.

30. Show that ˆ 1

−1

zi dz =
1 + e−π

2
(1− i),

where zi denotes the principal branch

zi = eiLog z, |z| > 0, −π < Arg z < π

and where the path of integration is any contour from z = −1 to z = 1 that, except for its end points, lies above
the real axis.
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