MCS 352 2009-2010 Spring Exercise Set VI

1. Evaluate.
(a) $\int_{0}^{1}(3 t-i)^{2} d t$.
(b) $\int_{0}^{1}(t+2 i)^{3} d t$.
(c) $\int_{0}^{\frac{\pi}{2}} \cosh (i t) d t$.
(d) $\int_{0}^{2} \frac{t}{t+i} d t$.
(e) $\int_{0}^{\frac{\pi}{4}} t e^{i t} d t$.
2. Let m and n be integers. Show that

$$
\int_{0}^{2 \pi} e^{i m t} e^{-i n t}=\left\{\begin{array}{cll}
0 & \text { when } & m \neq n \\
2 \pi & \text { when } & m=n
\end{array}\right.
$$

3. Show that $\int_{0}^{\infty} e^{-z t} d t=\frac{1}{z}$ provided $\operatorname{Re}(z)>0$.
4. Let $f(t)=u(t)+i v(t)$, where u and v are differentiable. Show that

$$
\int_{a}^{b} f(t) f^{\prime}(t) d t=\frac{1}{2}(f(b))^{2}-\frac{1}{2}(f(a))^{2}
$$

5. Give a parametrization of each contour
(a) $C=C_{1}+C_{2}$, as indicated on the left hand side of the figure below.
(b) $C=C_{1}+C_{2}+c_{3}$, as indicated on the right hand side of the figure below.

6. Sketch the following curves.
(a) $z(t)=t^{2}-1+i(t+4)$, for $1 \leq t \leq 3$.
(b) $z(t)=\sin t+i \cos 2 t$, for $-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}$.
(c) $z(t)=5 \cos t-i 3 \sin t$, for $\frac{\pi}{2} \leq t \leq 2 \pi$.
7. Evaluate $\int_{C} x d z$ from -4 to 4 along the following contours, as shown in the figures below.
(a) The polygonal path C with vertices $-4,-4+4 i, 4+4 i$, and 4 .
(b) The contour C that is the upper half of the circle $|z|=4$, oriented clockwise.

8. Evaluate $\int_{C} y d z$ for $-i$ to i along the following contours, as shown in the figures below.
(a) The polygonal path C with vertices $-i,-1-i,-1$, and i.
(b) The contour C that is the left half of the circle $|z|=1$, oriented clockwise.

9. Let $C_{r}^{+}(a)$ denotes the circle of radius r centered at a, oriented counterclockwise. Evaluate
(a) $\int_{C_{4}^{+}(0)} z d z$.
(b) $\int_{C_{4}^{+}(0)} \bar{z} d z$.
(c) $\int_{C_{2}^{-}(0)} \frac{1}{z} d z$. (The minus sign means clockwise orientation.)
(d) $\int_{C_{2}^{-}(0)} \frac{1}{\bar{z}} d z$.
(e) $\int_{C}(z+1) d z$, where C is $C_{1}^{+}(0)$ in the first quadrant.
(f) $\int_{C}\left(x^{2}-i y^{2}\right) d z$, where C is the upper half of $C_{1}^{+}(0)$.
(g) $\int_{C}|z-1|^{2} d z$, where C is the upper half of $C_{1}^{+}(0)$.
10. Show that
(a) $\left|\int_{C} \frac{1}{z^{2}-1} d z\right| \leq \frac{\pi}{3}$, where C is the first quadrant portion of $C_{2}^{+}(0)$.
(b) $\left|\int_{C_{R}^{+}(0)} \frac{\log (z)}{z^{2}} d z\right| \leq 2 \pi\left(\frac{\pi+\ln R}{R}\right)$.
11. Evaluate $\int_{C} z^{2} d z$ where C is the line segment from 1 to $1+i$.
12. Evaluate $\int_{C}\left|z^{2}\right| d z$ where C is given by $C: z(t)=t+i t^{2}$, for $0 \leq t \leq 1$.
13. Evaluate $\int_{C} e^{z} d z$, where C is the straight-line segment joining 1 to $1+i \pi$.
14. Evaluate $\int_{C} \bar{z} e^{z} d z$, where C is the square with vertices $0,1,1+i$, and i taken with the counterclockwise orientation.
15. Evaluate $\int_{C} e^{z} d z$, where C is the straight-line segment joining 0 to $1+i$.
16. Evaluate $\int_{C} \cos z d z$, where C is the polygonal path from 0 to $1+i$ that consists of the line segments from 0 to 1 and 1 to $1+i$.
17. Determine the domain of analyticity for the following functions and evaluate $\oint_{C} f(z) d z$, where $C=\{z:|z|=1\}$, if
(a) $f(z)=\frac{z}{z^{2}+2}$.
(b) $f(z)=\frac{1}{z^{2}+2 z+2}$.
(c) $f(z)=\tan z$.
(d) $f(z)=\log (z+5)$.
18. Show that $\oint_{C} z^{-1} d z=2 \pi i$, where C is the square with vertices $1 \pm i$ and $-1 \pm i$.
19. Show that $\oint_{C}\left(4 z^{2}-4 z+5\right)^{-1} d z=0$, where $C=\{z:|z|=1\}$.
20. Find $\oint_{C}(2 z-1)\left(z^{2}-z\right)^{-1} d z$ for the circle
(a) $C=\{z:|z|=2\}$.
(b) $C=\left\{z:|z|=\frac{1}{2}\right\}$.
21. Let C be the triangle with vertices 0,1 , and i and having positive orientation. Parametrize C and show that
(a) $\oint_{C} 1 d z=0$.
(b) $\oint_{C} z d z=0$.
22. Evaluate $\oint_{C}\left(4 z^{2}+4 z-3\right)^{-1} d z=\oint_{C}(2 z-1)^{-1}(2 z+3)^{-1} d z$ for the circle
(a) $C=\{z:|z|=1\}$.
(b) $C=\left\{z:\left|z+\frac{2}{3}\right|=1\right\}$.
(c) $C=\{z:|z|=3\}$.
23. Parametrize $C=\{z:|z|=1$ with $z(t)=\cos t+i \sin t$, for $-\pi \leq t \pi$. Use the principal branch of the square root function: $z^{\frac{1}{2}}=r^{\frac{1}{2}} \cos \frac{\theta}{2}+i r^{\frac{1}{2}} \sin \frac{\theta}{2}$, for $-\pi<\theta \leq \pi$, to find $\oint_{C} z^{\frac{1}{2}} d z$. Hint: Take limits as $t \rightarrow-\pi$.
24. Evaluate $\int_{C}\left(z^{2}-1\right)^{-1} d z$ for the contours shown below:

(a)

(b)
25. Evaluate $\oint_{C}|z|^{2} e^{z} d z$, where $C=\{z:|z|=1\}$.
26. Suppose that $f(z)=u(r, \theta)+i v(r, \theta)$ is analytic for all values of $z=r e^{i \theta}$. Show that

$$
\int_{0}^{2 \pi}[u(r, \theta) \cos \theta-v(r, \theta) \sin \theta] d \theta=0
$$

Hint: Integrate f around the circle $C=\{z:|z|=1\}$.
27. If C is the figure eight contour shown below,

evaluate
(a) $\int_{C}\left(z^{2}-z\right)^{-1} d z$.
(b) $\int_{C}(2 z-1)\left(z^{2}-z\right)^{-1} d z$.
28. Evaluate.
(a) $\int_{C} z^{2} d z$, where C is the line segment from $1+i$ to $2+i$.
(b) $\int_{C} \cos z d z$, where C is the line segment from $-i$ to $1+i$.
(c) $\int_{C} e^{z} d z$, where C is the line segment from 2 to $i \frac{\pi}{2}$.
(d) $\int_{C} z e^{z} d z$, where C is the line segment from $-1-i \frac{\pi}{2}$ to $2+i \pi$.
(e) $\int_{C} \frac{1+z}{z} d z$, where C is the line segment from 1 to i.
(f) $\int_{C} \sin \frac{z}{2} d z$, where C is the line segment from 0 to $\pi-2 i$.
(g) $\int_{C}\left(z^{2}+z^{-2}\right) d z$, where C is the line segment from i to $1+i$.
(h) $\int_{C} z e^{z^{2}} d z$, where C is the line segment from $1-2 i$ to $1+2 i$.
(i) $\int_{C} z \cos z d z$, where C is the line segment from 0 to i.
(j) $\int_{C} \sin ^{2} z d z$, where C is the line segment from 0 to i.
(k) $\int_{C} \log z d z$, where C is the line segment from 1 to $1+i$.
(1) $\int_{C} \frac{1}{z^{2}-z} d z$, where C is the line segment from 2 to $2+i$.
(m) $\int_{C} \frac{2 z-1}{z^{2}-z} d z$, where C is the line segment from 2 to $2+i$.
(n) $\int_{C} \frac{z-2}{z^{2}-z} d z$, where C is the line segment from 2 to $2+i$.
29. Show that $\int_{C} 1 d z=z_{2}-z_{1}$, where C is the line segment from z_{1} to z_{2}, by parametrizing C.
30. Let z_{1} and z_{2} be points in the right half-plane and let C be the line segment joining them. Show that $\int_{C} \frac{d z}{z^{2}}=\frac{1}{z_{1}}-\frac{1}{z_{2}}$.
31. Let $z^{\frac{1}{2}}$ be the principal branch of the square root function.
(a) Evaluate $\int_{C} \frac{d z}{2 z^{\frac{1}{2}}}$, where C is the line segment joining 9 to $3+4 i$.
(b) Evaluate $\int_{C} z^{\frac{1}{2}}$, where C is the right half of the circle $\{z:|z|=2\}$ joining $-2 i$ to $2 i$.
32. Using partial fraction decomposition, show that if z lies in the right half-plane and C is the line segment joining 0 to z, then

$$
\int_{C} \frac{d \xi}{\xi^{2}+1}=\operatorname{Arctan} z=\frac{i}{2} \log (z+i)-\frac{i}{2} \log (z-i)+\frac{\pi}{2} .
$$

33. Let f^{\prime} and g^{\prime} be analytic for all z and let C be any contour joining the points z_{1} and z_{2}. Show that

$$
\int_{C} f(z) g^{\prime}(z) d z=f\left(z_{2}\right) g\left(z_{2}\right)-f\left(z_{1}\right) g\left(z_{1}\right)-\int_{C} f^{\prime}(z) g(z) d z .
$$

34. Show that $\int_{C} z^{i} d z=(i-1) \frac{1+e^{-\pi}}{2}$, where C is the upper half of $\{z:|z|=1\}$.
