MCS 352 2009-2010 Spring Exercise Set V

- 1. Express e^z in the form u + iv for the following values of z.
 - (a) $-\frac{\pi}{3}$.
 - (b) $\frac{1}{2} i\frac{\pi}{4}$.
 - (c) -4 + 5i.
 - (d) $-1 + i\frac{3\pi}{2}$.
 - (e) $1 + i \frac{5\pi}{4}$.
 - (f) $\frac{\pi}{3} 2i$.
- 2. Find the real and imaginary parts of
 - (a) e^{e^z} .
 - (b) z^z .
- 3. Find all values of z for which the following equations hold.
 - (a) $e^z = -4$.
 - (b) $e^z = 2 + 2i$.
 - (c) $e^z = \sqrt{3} i$.
 - (d) $e^z = -1 + i\sqrt{3}$.
 - (e) $e^z = -2$.
 - (f) $e^z = 1 + i\sqrt{3}$.
 - (g) $e^{2z-1} = 1$.
- 4. Prove that $e^{z+i\pi} = e^{z-i\pi}$ holds for all z.
- 5. Express e^{z^2} and $e^{\frac{1}{z}}$ in the Cartesian form u(x,y)+iv(x,y).
- 6. Show that $|e^{-z}| < 1$ if and only if Re(z) > 0.
- 7. Show that $f(z) = ze^z$ is analytic for all z by showing that its real and imaginary parts satisfy the Cauchy-Riemann sufficient conditions for differentiability.
- 8. Find the derivatives of the following.
 - (a) e^{iz} .
 - (b) $z^4 e^{z^3}$.
 - (c) $e^{(a+ib)z}$.
 - (d) $e^{\frac{1}{z}}$.
- 9. Let n be a positive integer. Show that
 - (a) $(e^z)^n = e^{nz}$.
 - (b) $\frac{1}{(e^z)^n} = e^{-nz}$.

- 10. Show that $\sum_{n=0}^{\infty} e^{inz}$ converges for Im(z) > 0.
- 11. Use the fact e^{z^2} is analytic to show that $e^{x^2-y^2} \sin 2xy$ is a harmonic function.
- 12. Show the following concerning the exponential map.
 - (a) The image of the line $\{(x,y): x=t, y=2\pi+t\}$, where $-\infty < t < \infty$ is a spiral.
 - (b) The image of the first quadrant $\{(x,y): x > 0, y > 0\}$ is the region $\{w: |w| > 1\}$.
 - (c) If a is a real constant, the horizontal strip $\{(x,y): a < y \leq a + 2\pi\}$ is mapped one-to-one and onto the nonzero complex numbers.
 - (d) The image of the vertical line segment $\{(x,y): x=2, y=t\}$ where $\frac{\pi}{6} < t < \frac{7\pi}{6}$ is a half circle.
 - (e) The image of the horizontal ray $\left\{(x,y): x>0, y=\frac{\pi}{3}\right\}$ is a ray.
- 13. Show that
 - (a) $e^{2\pm 3\pi i} = -e^2$.
 - (b) $e^{\frac{2+\pi i}{4}} = \sqrt{\frac{e}{2}}(1+i)$.
 - (c) $e^{z+\pi i} = -e^z$.
- 14. Write $|e^{2z+i}|$ and $|e^{iz^2}|$ in terms of x and y. Then show that

$$|e^{2z+i} + e^{iz^2}| < e^{2x} + e^{-2xy}.$$

- 15. Show that $\overline{e^{iz}} = e^{i\overline{z}}$ if and only if $z = n\pi$, $n \in \mathbb{Z}$.
- 16. (a) Show that if e^z is real, then $\text{Im}(z) = n\pi$, $n \in \mathbb{Z}$.
 - (b) If e^z is pure imaginary, what restriction is placed on z?
- 17. Describe the behavior of $e^z = e^x e^{iy}$ as
 - (a) x tends to $-\infty$;
 - (b) y tends to ∞ ;
- 18. Write $\operatorname{Re}(e^{\frac{1}{z}})$ in terms of x and y. Why is this function harmonic in every domain that does not contain the origin?
- 19. Find all values for
 - (a) $Log(ie^2)$.
 - (b) $Log(\sqrt{3}-i)$.
 - (c) $\operatorname{Log}(i\sqrt{2} \sqrt{2})$.

- (d) $Log((1+i)^4)$.
- (e) $\log(-3)$.
- (f) log 8.
- (g) $\log(4i)$.
- (h) $\log(-\sqrt{3} i)$.
- 20. Find all the values of z for which each equation holds.
 - (a) $\text{Log}(z) = 1 i\frac{\pi}{4}$.
 - (b) $\text{Log}(z-1) = i\frac{\pi}{2}$.
 - (c) $e^z = -ie$.
 - (d) $e^{z+1} = i$.
- 21. Show that the following functions are harmonic in the right half-plane $\{z : \operatorname{Re} z > 0\}$.
 - (a) $u(x,y) = \ln(x^2 + y^2)$.
 - (b) $\arctan\left(\frac{y}{x}\right)$.
- 22. Show that $z^n = e^{n \log_{\alpha}(z)}$, where n is an integer and $\log_{\alpha}(z)$ is any branch of the logarithm.
- 23. Construct branches of $f(z) = \log(z+2)$ that are analytic at all points in the plane except at points on the following rays.
 - (a) $\{(x,y): x \ge -2, y = 0\}.$
 - (b) $\{(x,y): x=-2, y \ge 0\}.$
 - (c) $\{(x,y): x=-2, y \leq 0\}.$
- 24. Show that the mapping w = Log z maps
 - (a) the ray $\left\{z=re^{i\theta}: r>0, \theta=\frac{\pi}{3}\right\}$ one-to-one and onto the horizontal line $\left\{(u,v): v=\frac{\pi}{3}\right\}$.
 - (b) the semicircle $\left\{z=2e^{i\theta}: -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\right\}$ one-to-one and onto the vertical line segment $\left\{(\ln 2,v): -\frac{\pi}{2} \leq v \leq \frac{\pi}{2}\right\}$.
- 25. Show that
 - (a) $Log(-ei) = 1 \frac{\pi}{2}i$.
 - (b) $Log(1-i) = \frac{1}{2} \ln 2 \frac{\pi}{4}i$.
- 26. Verify that when $n = 0, \pm 1, \pm 2, \cdots$.
 - (a) $\log e = 1 + 2n\pi i$.
 - (b) $\log i = \left(2n + \frac{1}{2}\right)\pi i$.
 - (c) $\log(-1+\sqrt{3}i) = \ln 2 + 2\left(n + \frac{1}{3}\right)\pi i$.
- 27. Show that
 - (a) $Log(1+i)^2 = 2Log(1+i)$.
 - (b) $Log(-1+i)^2 \neq 2Log(-1+i)$.
- 28. Show that

(a) $\log(i^2) = 2 \log i$ when

$$\log z = \ln r + i\theta$$
, $r > 0$, $\frac{\pi}{4} < \theta < \frac{9\pi}{4}$.

(b) $\log(i^2) \neq 2 \log i$ when

$$\log z = \ln r + i\theta$$
, $r > 0$, $\frac{3\pi}{4} < \theta < \frac{11\pi}{4}$.

- 29. Show that
 - (a) the set of values of $\log(i^{\frac{1}{2}})$ is $(n+\frac{1}{4})\pi i$, $n=0,\pm 1,\pm 2,\cdots$ and that the same is true of $\frac{1}{2}\log i$.
 - (b) the set of values of $\log(i^2)$ is not the same as the set of values of $2\log i$.
- 30. Find all roots of the equation $\log z = i\frac{\pi}{2}$.
- 31. Show that
 - (a) the function Log(z-i) is analytic everywhere except on the half line $y=1, x \leq 0$.
 - (b) the function

$$\frac{\text{Log}(z+4)}{z^2+i}$$

is analytic everywhere except at the points $\pm \frac{1-i}{\sqrt{2}}$ and on the portion $x \le -4$ of the real axis.

32. Show that

$$Re(\log(z-1)) = \frac{1}{2}\ln((x-1)^2 + y^2), \ z \neq 1.$$

Why must this function satisfy Laplace's equation when $z \neq 1$?

33. Show that if $rez_1 > 0$ and $rez_2 > 0$, then

$$Log(z_1 z_2) = Log z_1 + Log z_2.$$

34. Show that, for any two nonzero complex numbers z_1 and z_2 ,

$$Log(z_1 z_2) = Log z_1 + Log z_2 + 2N\pi i$$

where N has one of the values $0, \pm 1$.

35. Show that when $n = 0, \pm 1, \pm 2, \cdots$

(a)
$$(1+i)^i = \exp\left(-\frac{\pi}{4} + 2n\pi\right) \exp\left(\frac{i}{2}\ln 2\right)$$
.

- (b) $(-1)^{\frac{1}{\pi}} = e^{(2n+1)i}$.
- 36. Find the principal value of
 - (a) 4^{i} .
 - (b) $(1+i)^{\pi i}$.
 - (c) $(-1)^{\frac{1}{\pi}}$.
 - (d) $(1+i\sqrt{3})^{\frac{i}{2}}$.
 - (e) $\left(\frac{e}{2}(-1-\sqrt{3}i)\right)^{3\pi i}$.
 - (f) $(1-i)^{4i}$.

- 37. Find all values of
 - (a) i^i .
 - (b) $(-1)^{\sqrt{2}}$.
 - (c) $(i)^{\frac{2}{\pi}}$.
 - (d) $(1+i)^{2-i}$.
 - (e) $(-1)^{\frac{3}{4}}$.
 - (f) $(i)^{\frac{2}{3}}$.
- 38. Show that $(-1 + i\sqrt{3})^{\frac{3}{2}} = \pm 2\sqrt{2}$.
- 39. Show that the result in Exercise 38 could have obtained by writing
 - (a) $(-1+i\sqrt{3})^{\frac{3}{2}} = \left((-1+i\sqrt{3})^{\frac{1}{2}}\right)^3$ and first finding the square roots of $-1+i\sqrt{3}$.
 - (b) $(-1+i\sqrt{3})^{\frac{3}{2}} = ((-1+i\sqrt{3})^3)^{\frac{1}{2}}$ and first cubing $-1+i\sqrt{3}$.
- 40. Let c=a+bi be a fixed complex number, where $c \neq 0, \pm 1, \pm 2, \cdots$, and note that i^c is multiple-valued. What restriction must be placed on the constant c so that the values of $|i^c|$ are all the same?
- 41. For $z = re^{i\theta} \neq 0$, show that the principal branch of
 - (a) z^i is given by the equation

$$z^{i} = e^{-\theta}(\cos(\ln r) + i\sin(\ln r)),$$

where r > 0 and $-\pi < \theta \le \pi$.

(b) z^{α} (α a real number) is given by the equation

$$z^{\alpha} = r^{\alpha} \cos \alpha \theta + i r^{\alpha} \sin \alpha \theta.$$

where r > 0 and $-\pi < \theta \le \pi$.

- 42. Write $\tan z$ in the form u(x,y) + iv(x,y).
- 43. Show that for all z,
 - (a) $\sin(\pi z) = \sin z$.
 - (b) $\sin\left(\frac{\pi}{2} z\right) = \cos z$.
 - (c) $\sinh(z + i\pi) = -\sinh z$.
 - (d) $\tanh(z + i\pi) = \tanh z$.
 - (e) $\sin(iz) = i \sinh z$.
 - (f) $\cosh(iz) = \cos z$.
- 44. Express the following quantities in u + iv form.
 - (a) $\cos(1+i)$.
 - (b) $\sin\left(\frac{\pi+4i}{4}\right)$.
 - (c) $\sin 2i$.
 - (d) $\cos(-2+i)$.
 - (e) $\tan\left(\frac{\pi+2i}{4}\right)$.
 - (f) $\tan\left(\frac{\pi+i}{2}\right)$.

- (g) $\sinh(1+i\pi)$.
- (h) $\cosh\left(\frac{i\pi}{2}\right)$.
- (i) $\cosh\left(\frac{4-i\pi}{4}\right)$.
- 45. Find the derivatives of the following, and state where they are defined.
 - (a) $\sin\left(\frac{1}{z}\right)$.
 - (b) $z \tan z$.
 - (c) $\sec z^2$.
 - (d) $z \csc^2 z$.
 - (e) $z \sinh z$.
 - (f) $\cosh z^2$.
 - (g) $z \tan z$.
- 46. Show that
 - (a) $\sin \overline{z} = \overline{\sin z}$ holds for all z.
 - (b) $\sin \overline{z}$ is nowhere analytic.
 - (c) $\cos \overline{z} = \overline{\cos z}$ holds for all z.
 - (d) $\cos \overline{z}$ is nowhere analytic.
 - (e) $\sinh \overline{z} = \overline{\sinh z}$ holds for all z.
 - (f) $\sinh \overline{z}$ is nowhere analytic. (g) $\cosh \overline{z} = \overline{\cosh z}$ holds for all z.
 - (h) $\cosh \overline{z}$ is nowhere analytic.
- 47. Show that $\overline{\tanh z} = \tanh \overline{z}$ at points where $\cosh z \neq 0$.
- 48. Show that
 - (a) $\lim_{z \to 0} \frac{\cos z 1}{z} = 0.$
 - (b) $\lim_{y\to\infty} \tan(x_0+iy) = i$, where x_0 is any fixed real number
- 49. Find all values of z for which each equation holds.
 - (a) $\sin z = \cosh 4$.
 - (b) $\cos z = 2$.
 - (c) $\sin z = i \sinh 1$.
 - (d) $\sinh z = \frac{i}{2}$.
 - (e) $\cosh z = 1$.
 - (f) $\sinh z = i$.
 - (g) $\cosh z = \frac{1}{2}$.
 - (h) $\cosh z = -2$
- 50. Show that for z = x + iy,
 - (a) $|\sin z| \ge |\sin x|$.
 - (b) $|\cos z| \ge |\cos x|$.
- 51. Show that for z = x + iy,
 - (a) $|\sinh y| \le |\sin z| \le \cosh y$.
 - (b) $|\sinh y| \le |\cos z| \le \cosh y$.

- (c) $|\sinh x| \le |\cosh z| \le \cosh x$.
- 52. Show that $|\cos z|^2 + |\sin z|^2 \ge 1$ for all $z \in \mathbb{C}$, and the equality holds if and only if z is a real number.
- 53. Show that
 - (a) $\overline{\cos(iz)} = \cos(i\overline{z})$ for all z.
 - (b) $\overline{\sin(iz)} = \sin(i\overline{z})$ if and only if $z = n\pi i, n \in \mathbb{Z}$.
- 54. Give an elegant argument that explains why the following functions are harmonic.
 - (a) $h(x, y) = \sin x \cosh y$.
 - (b) $h(x, y) = \cos x \sinh y$.
 - (c) $h(x, y) = \sinh x \cos y$.
 - (d) $h(x, y) = \cosh x \sin y$.
- 55. Establish the following identities.
 - (a) $e^{iz} = \cos z + i \sin z$.
 - (b) $\cos z = \cos x \cosh y i \sin x \sinh y$.
 - (c) $\sin(z_1 + z_2) = \sin z_1 \cos z_2 + \cos z_1 \sin z_2$.
 - (d) $|\cos z|^2 = \cos^2 x + \sinh^2 y$.
 - (e) $|\cosh z|^2 = \sinh^2 x + \cos^2 y$.
 - (f) $|\sinh z|^2 = \sinh^2 x + \sin^2 y$.
 - (g) $\cosh z = \cosh x \cos y + i \sinh x \sin y$.
 - (h) $\cosh^2 z \sinh^2 z = 1$.
 - (i) $\sinh z + \cosh z = e^z$.
 - (j) $\cosh(z_1 + z_2) = \cosh z_1 \cosh z_2 + \sinh z_1 \sinh z_2$.
 - (k) $\sinh(z + \pi i) = -\sinh z$.
 - (1) $\cosh(z + \pi i) = -\cosh z$.
 - (m) $\tanh(z + \pi i) = \tanh z$.
- 56. Show that
 - (a) $\sinh z = 0$ if and only if $z = n\pi i$, $n \in \mathbb{Z}$.
 - (b) $\cosh z = 0$ if and only if $z = \left(\frac{\pi}{2} + n\pi\right)i$, $n \in \mathbb{Z}$.
- 57. Find all values of the following.
 - (a) $\arcsin \frac{5}{4}$.
 - (b) $\arccos \frac{5}{3}$.
 - (c) arcsin 3.
 - (d) $\arccos 3i$.
 - (e) $\arctan 2i$.
 - (f) $\arctan i$.
 - (g) $\arctan(1+i)$.
 - (h) $\arcsin i$.
 - (i) $\arcsin \frac{3}{4}$.
 - (j) $\operatorname{arccosh} i$.
 - (k) $\operatorname{arccosh}(-1)$.
 - (l) $\operatorname{arccosh} \frac{1}{2}$.
 - (m) $\operatorname{arctanh} i$.

- (n) arctanh 0.
- (o) $\operatorname{arctanh} i\sqrt{3}$.
- 58. Solve the equation $\sin z = 2$ for z by
 - (a) equating real parts and imaginary parts in that equation.
 - (b) Using the formula for $\arcsin z$.
- 59. Establish the following identities.
 - (a) $\arccos z = -i \log \left(z + i(1 z^2)^{\frac{1}{2}} \right)$.
 - (b) $\frac{d}{dz} \arccos z = -\frac{1}{(1-z^2)^{\frac{1}{2}}}$.
 - (c) $\arctan z = \frac{i}{2} \log \left(\frac{i+z}{i-z} \right)$.
 - (d) $\frac{d}{dz} \arctan z = \frac{1}{1+z^2}$.
 - (e) $\arcsin z + \arccos z = \frac{\pi}{2} + 2n\pi$, where $n \in \mathbb{Z}$.
 - (f) $\frac{d}{dz} \operatorname{arctanh} z = \frac{1}{1 z^2}$.
 - (g) $\arcsin z = \log \left(z + (z^2 + 1)^{\frac{1}{2}}\right)$.
 - (h) $\frac{d}{dz} \operatorname{arcsinh} z = \frac{1}{(z^2 + 1)^{\frac{1}{2}}}$.
 - (i) $\operatorname{arccosh} z = \log \left(z + (z^2 1)^{\frac{1}{2}} \right)$.
 - (j) $\frac{d}{dz} \operatorname{arccosh} z = \frac{1}{(z^2 1)^{\frac{1}{2}}}$.