MCS 352 2009-2010 Spring Exercise Set III

1. Find the values of

(a)
$$(1+2i)^3$$
.
(b) $\frac{5}{-3+4i}$.
(c) $\left(\frac{2+i}{3-2i}\right)^2$.
(d) $(1+i)^n + (1-i)^n$

- 2. If z = x + iy (x and y real), find the real and imaginary parts of
 - (a) z^4 . (b) $\frac{1}{z}$. (c) $\frac{z-1}{z+1}$. (d) $\frac{1}{z^2}$.
- 3. Show that

(a)
$$\left(\frac{-1\pm i\sqrt{3}}{2}\right)^3 = 1.$$

(b) $\left(\frac{\pm 1\pm i\sqrt{3}}{2}\right)^6 = 1.$

for all combinations of signs.

- 4. Compute
 - (a) \sqrt{i} .
 - (b) $\sqrt{-i}$. (c) $\sqrt{1+i}$

(d)
$$\sqrt{\frac{1-i\sqrt{3}}{2}}$$
.

- 5. Find the four values of $\sqrt[4]{-1}$.
- 6. Compute $\sqrt[4]{i}$ and $\sqrt[4]{-i}$.
- 7. Solve the quadratic equation $z^2 + (\alpha + i\beta)z + \gamma + i\delta = 0$.
- 8. Verify by calculation that the values of $\frac{z}{z^2+1}$ for z = x + iy and z = x iy are conjugate.
- 9. Find the absolute values of
 - (a) -2i(3+i)(2+4i)(1+i). (b) $\frac{(3+4i)(-1+2i)}{(-1-i)(3-i)}$.

10. Prove that

$$\left|\frac{a-b}{1-\bar{a}b}\right| = 1$$

if either |a| = 1 or |b| = 1. What exception must be made if |a| = |b| = 1?

- 11. Find the conditions under which the equation $az + b\overline{z} + c = 0$ in one complex unknown has exactly one solution, and compute that solution.
- 12. Prove that

$$\left|\frac{a-b}{1-\bar{a}b}\right| < 1$$

if |a| < 1 and |b| < 1.

- 13. Express $\cos 3\theta$, $\cos 4\theta$, and $\sin 5\theta$ in terms of $\cos \theta$ and $\sin 3\theta$.
- 14. Simplify $1 + \cos \theta + \cos 2\theta + \dots + \cos n\theta$ and $1 + \sin \theta + \sin 2\theta + \dots + \sin n\theta$.
- 15. Use definition of limit to prove that

(a)
$$\lim_{z \to z_0} \operatorname{Re}(z) = \operatorname{Re}(z_0).$$

(b)
$$\lim_{z \to z_0} \overline{z} = \overline{z}_0.$$

(c)
$$\lim_{z \to 0} \frac{\overline{z}^2}{z} = 0.$$

16. Let a, b, and c denote complex constants. Then use definition of limit to show that

(a)
$$\lim_{z \to z_0} (az + b) = az_0 + b.$$

(b) $\lim_{z \to z_0} (z^2 + c) = z_0^2 + c.$
(c) $\lim_{z \to 1-i} [x + i(2x + y)] = 1 + i \quad (z = x + iy).$

17. Find $\lim_{z \to i} \frac{iz}{z+i}$.

18. Show that the limit of the function

$$f(z) = \left(\frac{z}{\overline{z}}\right)^2$$

as z tends to 0 does not exist.

- 19. Use definition of limit to prove that: "If $\lim_{z \to z_0} f(z) = w_0$ then $\lim_{z \to z_0} |f(z)| = |w_0|$ ".
- 20. Prove the followings:

(a)
$$\lim_{z \to z_0} f(z) = \infty$$
 if and only if $\lim_{z \to z_0} \frac{1}{f(z)} = 0$.
(b) $\lim_{z \to \infty} f(z) = w_0$ if and only if $\lim_{z \to 0} f\left(\frac{1}{z}\right) = w_0$.

(c)
$$\lim_{z \to \infty} f(z) = \infty$$
 if and only if $\lim_{z \to 0} \frac{1}{f(1/z)} = 0$.

- 21. Use Exercise 20 to show that
 - (a) $\lim_{z \to \infty} \frac{4z^2}{(z-1)^2} = 4.$ (b) $\lim_{z \to 1} \frac{1}{(z-1)^3} = \infty.$ (c) $\lim_{z \to \infty} \frac{z^2 + 1}{z-1} = \infty.$
- 22. Use Exercise 20 to show that when

$$T(z) = \frac{az+b}{cz+d} \quad (ad-bc \neq 0),$$
(a) $\lim_{z \to \infty} T(z) = \infty$ if $c = 0$.
(b) $\lim_{z \to \infty} T(z) = \frac{a}{c}$ and $\lim_{z \to -\frac{d}{c}} T(z) = \infty$ if $c \neq 0$.

23. Find f'(z) when

(a)
$$f(z) = 3z^2 - 2z + 4$$
.
(b) $f(z) = (1 - 4z^2)^3$.
(c) $\frac{z - 1}{2z + 1}, \quad z \neq -\frac{1}{2}$.
(d) $f(z) = \frac{(1 + z^2)^4}{z^2}, \quad z \neq 0$.

- 24. If f and g are entire functions, which of the following are necessarily entire?
 - (a) $(f(z))^3$.
 - (b) f(z)g(z).

(c)
$$\frac{f(z)}{g(z)}$$
.
(d) $f\left(\frac{1}{z}\right)$.

(e)
$$f(z-1)$$
.

- (f) f(q(z)).
- 25. In each case determine where the following functions are analytic.

(a)
$$f(z) = \frac{2z+1}{z(z^2+1)}$$
.
(b) $f(z) = \frac{z^3+i}{z^2-3z+2}$.
(c) $f(z) = \frac{z^2+1}{(z+2)(z^2+2z+2)}$.

26. Use L'Hôpital's rule to find the following limits.

(a)
$$\lim_{z \to i} \frac{z^4 - 1}{z - i}$$
.
(b) $\lim_{z \to -i} \frac{z^6 + 1}{z^2 + 1}$.
(c) $\lim_{z \to 1+i} \frac{z^4 + 4}{z^2 - 2z + 2}$.
(d) $\lim_{z \to 1+i\sqrt{3}} \frac{z^6 - 64}{z^3 + 8}$.

(e)
$$\lim_{z \to -1+i\sqrt{3}} \frac{z^9 - 512}{z^3 - 8}$$
.

27. Show that the following functions are nowhere differentiable.

(a)
$$f(z) = \operatorname{Re}(z)$$
.

(b)
$$f(z) = \text{Im}(z)$$
.

28. Show that f'(z) does not exist at any point if

(a)
$$f(z) = z - \bar{z}$$
.
(b) $f(z) = 2x + ixy^2$.
(c) $f(z) = e^x e^{-iy}$.

- 29. Show that f'(z) and its derivative f''(z) exist everywhere, and find f''(z) when
 - (a) f(z) = iz + 2. (b) $f(z) = e^{-x}e^{-iy}$. (c) $f(z) = z^3$. (d) $f(z) = \cos x \cosh y - i \sin x \sinh y$.
- 30. Determine where f'(z) exists and find its value when

(a)
$$f(z) = \frac{1}{z}$$
.
(b) $f(z) = x^2 + iy^2$.
(c) $f(z) = z \operatorname{Im}(z)$.

31. Show that each of these functions is differentiable in the indicated domain of definition, and find f'(z).

(a)
$$f(z) = \frac{1}{z^4}, \ z \neq 0.$$

(b) $f(z) = \sqrt{r}e^{i\frac{\theta}{2}}, \ r > 0, \ \alpha < \theta < \alpha + 2\pi.$
(c) $f(z) = e^{-\theta} \cos(\ln r) + ie^{-\theta} \sin(\ln r), \ r > 0, \ 0 < \theta < 2\pi.$

32. Use the Cauchy-Riemann conditions to determine where the following functions are differentiable, and evaluate the derivatives at those points where they exist.

(a)
$$f(z) = iz + 4i$$
.
(b) $f(z) = f(x, y) = \frac{y + ix}{x^2 + y^2}$.
(c) $f(z) = -2(xy + x) + i(x^2 - 2y - y^2)$.
(d) $f(z) = x^3 - 3x^2 - 3xy^2 + 3y^2 + i(3x^2y - 6xy - y^3)$.
(e) $f(z) = x^3 + i(1 - y)^3$.
(f) $f(z) = z^2 + z$.
(g) $f(z) = x^2 + y^2 + i2xy$.
(h) $f(z) = |z - (2 + i)^2|$.

- 33. Find the constants a and b such that f(z) = (2x y) + i(ax + by) is differentiable for all z.
- 34. Use any method to show that the following functions are nowhere differentiable.

(a)
$$h(z) = e^y \cos x + ie^y \sin x$$
.

(b)
$$g(z) = z + \bar{z}$$
.

35. Determine where the following functions are differentiable and where they are analytic. Explain!

(a)
$$f(z) = x^3 + 3xy^2 + i(y^3 + 3x^2y).$$

(b) $f(z) = 8x - x^3 - xy^2 + i(x^2y + y^3 - 8y).$
(c) $f(z) = x^2 - y^2 + i2|xy|.$

- 36. Let f be a nonconstant analytic function in the domain D. Show that the function $g(z) = \overline{f(z)}$ is not analytic in D.
- 37. Show that each of the following functions is entire.
 - (a) f(z) = 3x + y + i(3y x).
 - (b) $f(z) = \sin x \cosh y + i \cos x \sinh y$.
 - (c) $f(z) = e^{-y} \sin x ie^{-y} \cos x$.
 - (d) $f(z) = (z^2 2)e^{-x}e^{-iy}$.
- 38. Show that each of these functions is nowhere analytic.
 - (a) f(z) = xy + iy.
 - (b) $f(z) = 2xy + i(x^2 y^2)$.

(c)
$$f(z) = e^y e^{ix}$$
.

- 39. Does an analytic function f(z) = u(x, y) + iv(x, y)exist for which $v(x, y) = x^3 + y^3$? Why or why not?
- 40. (a) Show that $f(z) = x^2 + iy^2$ is differentiable at all points on the line y = x.
 - (b) Show that it is nowhere analytic.
- 41. Assume that f is analytic in a region and that at every point, either f = 0 or f' = 0. Show that f is constant.
- 42. Show that a nonconstant analytic function cannot map a region into a straight line or into a circular arc.
- 43. Show that there are no analytic functions f = u + ivwith $u(x, y) = x^2 + y^2$.
- 44. Suppose f is an entire function of the form

$$f(x,y) = u(x) + iv(y).$$

Show that f is a linear polynomial.

45. Determine where the following functions are harmonic.

(a)
$$u(x, y) = e^x \cos y$$
 and $v(x, y) = e^x \sin y$.
(b) $u(x, y) = \ln(x^2 + y^2)$ for $(x, y) \neq (0, 0)$.

- 46. Let a, b, and c be real constants. Determine a relation among the coefficients that will guarantee that the function $\phi(x, y) = ax^2 + bxy + cy^2$ is harmonic.
- 47. Let $v(x, y) = \arctan \frac{y}{x}$ for $x \neq 0$. Compute the partial derivatives of v, and verify that v satisfies Laplace's equation.
- 48. Find an analytic function f(z) = u(x, y) + iv(x, y) for the following expressions.

(a)
$$u(x,y) = y^3 - 3x^2y$$
.

- (b) $u(x,y) = \sin y \sinh x$.
- (c) $v(x,y) = e^y \sin x$.
- (d) $v(x, y) = \sin x \cosh y$.
- 49. Assume that u(x, y) is harmonic on a region D that is symmetric about the line y = 0. Show that U(x, y) = u(x, -y) is harmonic on D.
- 50. Let v be a harmonic conjugate of u. Show that -u is a harmonic conjugate of v.
- 51. Let v be a harmonic conjugate of u. Show that $u^2 v^2$ is a harmonic function.
- 52. Suppose that v is a harmonic conjugate of u and that u is a harmonic conjugate of v. Show that u and v must be constants functions.
- 53. Use the polar form of Laplace's equation to show that the following functions are harmonic.

(a)
$$u(r,\theta) = \left(r + \frac{1}{r}\right)\cos\theta$$

(b) $v(r,\theta) = \left(r - \frac{1}{r}\right)\sin\theta$.
(c) $u(r,\theta) = r^n \cos n\theta$
(d) $v(r,\theta) = r^n \sin n\theta$.

54. Show that u(x, y) is harmonic in some domain and find a harmonic conjugate v(x, y) when

(a)
$$u(x,y) = 2x(1-y)$$
.

(b) $u(x,y) = 2x - x^3 + 3xy^2$.

(c)
$$u(x, y) = \sinh x \sin y$$
.

(d)
$$u(x,y) = \frac{y}{x^2 + y^2}.$$

- 55. Show that if v_1 and v_2 are harmonic conjugates of u in a domain D, then $v_1(x, y)$ and $v_2(x, y)$ can differ at most by an additive constant.
- 56. Verify that the function $u(r,\theta) = \ln r$ is harmonic in the domain r > 0, $0 < \theta < 2\pi$ by showing that it satisfies the polar form of Laplace's equation. Then use a technique similar to the one used for harmonic functions in Cartesian coordinates, but involving the Cauchy-Riemann equations in polar form to derive a harmonic conjugate.
- 57. Find all analytic functions f = u + iv with $u(x, y) = x^2 y^2$.