MCS 352 2009-2010 Spring
 Exercise Set III

1. Find the values of
(a) $(1+2 i)^{3}$.
(b) $\frac{5}{-3+4 i}$.
(c) $\left(\frac{2+i}{3-2 i}\right)^{2}$.
(d) $(1+i)^{n}+(1-i)^{n}$.
2. If $z=x+i y$ (x and y real), find the real and imaginary parts of
(a) z^{4}.
(b) $\frac{1}{z}$.
(c) $\frac{z-1}{z+1}$.
(d) $\frac{1}{z^{2}}$.
3. Show that
(a) $\left(\frac{-1 \pm i \sqrt{3}}{2}\right)^{3}=1$.
(b) $\left(\frac{ \pm 1 \pm i \sqrt{3}}{2}\right)^{6}=1$.
for all combinations of signs.
4. Compute
(a) \sqrt{i}.
(b) $\sqrt{-i}$.
(c) $\sqrt{1+i}$.
(d) $\sqrt{\frac{1-i \sqrt{3}}{2}}$.
5. Find the four values of $\sqrt[4]{-1}$.
6. Compute $\sqrt[4]{i}$ and $\sqrt[4]{-i}$.
7. Solve the quadratic equation $z^{2}+(\alpha+i \beta) z+\gamma+i \delta=0$.
8. Verify by calculation that the values of $\frac{z}{z^{2}+1}$ for $z=x+i y$ and $z=x-i y$ are conjugate.
9. Find the absolute values of
(a) $-2 i(3+i)(2+4 i)(1+i)$.
(b) $\frac{(3+4 i)(-1+2 i)}{(-1-i)(3-i)}$.
10. Prove that

$$
\left|\frac{a-b}{1-\bar{a} b}\right|=1
$$

if either $|a|=1$ or $|b|=1$. What exception must be made if $|a|=|b|=1$?
11. Find the conditions under which the equation $a z+$ $b \bar{z}+c=0$ in one complex unknown has exactly one solution, and compute that solution.
12. Prove that

$$
\left|\frac{a-b}{1-\bar{a} b}\right|<1
$$

if $|a|<1$ and $|b|<1$.
13. Express $\cos 3 \theta, \cos 4 \theta$, and $\sin 5 \theta$ in terms of $\cos \theta$ and $\sin 3 \theta$.
14. Simplify $1+\cos \theta+\cos 2 \theta+\cdots+\cos n \theta$ and $1+\sin \theta+$ $\sin 2 \theta+\cdots+\sin n \theta$.
15. Use definition of limit to prove that
(a) $\lim _{z \rightarrow z_{0}} \operatorname{Re}(z)=\operatorname{Re}\left(z_{0}\right)$.
(b) $\lim _{z \rightarrow z_{0}} \bar{z}=\bar{z}_{0}$.
(c) $\lim _{z \rightarrow 0} \frac{\bar{z}^{2}}{z}=0$.
16. Let a, b, and c denote complex constants. Then use definition of limit to show that
(a) $\lim _{z \rightarrow z_{0}}(a z+b)=a z_{0}+b$.
(b) $\lim _{z \rightarrow z_{0}}\left(z^{2}+c\right)=z_{0}^{2}+c$.
(c) $\lim _{z \rightarrow 1-i}[x+i(2 x+y)]=1+i \quad(z=x+i y)$.
17. Find $\lim _{z \rightarrow i} \frac{i z^{3}-1}{z+i}$.
18. Show that the limit of the function

$$
f(z)=\left(\frac{z}{\bar{z}}\right)^{2}
$$

as z tends to 0 does not exist.
19. Use definition of limit to prove that: "If $\lim _{z \rightarrow z_{0}} f(z)=w_{0}$ then $\lim _{z \rightarrow z_{0}}|f(z)|=\left|w_{0}\right|$ ".
20. Prove the followings:
(a) $\lim _{z \rightarrow z_{0}} f(z)=\infty$ if and only if $\lim _{z \rightarrow z_{0}} \frac{1}{f(z)}=0$.
(b) $\lim _{z \rightarrow \infty} f(z)=w_{0}$ if and only if $\lim _{z \rightarrow 0} f\left(\frac{1}{z}\right)=w_{0}$.
(c) $\lim _{z \rightarrow \infty} f(z)=\infty$ if and only if $\lim _{z \rightarrow 0} \frac{1}{f(1 / z)}=0$.
21. Use Exercise 20 to show that
(a) $\lim _{z \rightarrow \infty} \frac{4 z^{2}}{(z-1)^{2}}=4$.
(b) $\lim _{z \rightarrow 1} \frac{1}{(z-1)^{3}}=\infty$.
(c) $\lim _{z \rightarrow \infty} \frac{z^{2}+1}{z-1}=\infty$.
22. Use Exercise 20 to show that when

$$
T(z)=\frac{a z+b}{c z+d} \quad(a d-b c \neq 0)
$$

(a) $\lim _{z \rightarrow \infty} T(z)=\infty$ if $c=0$.
(b) $\lim _{z \rightarrow \infty} T(z)=\frac{a}{c}$ and $\lim _{z \rightarrow-\frac{d}{c}} T(z)=\infty$ if $c \neq 0$.
23. Find $f^{\prime}(z)$ when
(a) $f(z)=3 z^{2}-2 z+4$.
(b) $f(z)=\left(1-4 z^{2}\right)^{3}$.
(c) $\frac{z-1}{2 z+1}, \quad z \neq-\frac{1}{2}$.
(d) $f(z)=\frac{\left(1+z^{2}\right)^{4}}{z^{2}}, \quad z \neq 0$.
24. If f and g are entire functions, which of the following are necessarily entire?
(a) $(f(z))^{3}$.
(b) $f(z) g(z)$.
(c) $\frac{f(z)}{g(z)}$.
(d) $f\left(\frac{1}{z}\right)$.
(e) $f(z-1)$.
(f) $f(g(z))$.
25. In each case determine where the following functions are analytic.
(a) $f(z)=\frac{2 z+1}{z\left(z^{2}+1\right)}$.
(b) $f(z)=\frac{z^{3}+i}{z^{2}-3 z+2}$.
(c) $f(z)=\frac{z^{2}+1}{(z+2)\left(z^{2}+2 z+2\right)}$.
26. Use L'Hôpital's rule to find the following limits.
(a) $\lim _{z \rightarrow i} \frac{z^{4}-1}{z-i}$.
(b) $\lim _{z \rightarrow-i} \frac{z^{6}+1}{z^{2}+1}$.
(c) $\lim _{z \rightarrow 1+i} \frac{z^{4}+4}{z^{2}-2 z+2}$.
(d) $\lim _{z \rightarrow 1+i \sqrt{3}} \frac{z^{6}-64}{z^{3}+8}$.
(e) $\lim _{z \rightarrow-1+i \sqrt{3}} \frac{z^{9}-512}{z^{3}-8}$.
27. Show that the following functions are nowhere differentiable.
(a) $f(z)=\operatorname{Re}(z)$.
(b) $f(z)=\operatorname{Im}(z)$.
28. Show that $f^{\prime}(z)$ does not exist at any point if
(a) $f(z)=z-\bar{z}$.
(b) $f(z)=2 x+i x y^{2}$.
(c) $f(z)=e^{x} e^{-i y}$.
29. Show that $f^{\prime}(z)$ and its derivative $f^{\prime \prime}(z)$ exist everywhere, and find $f^{\prime \prime}(z)$ when
(a) $f(z)=i z+2$.
(b) $f(z)=e^{-x} e^{-i y}$.
(c) $f(z)=z^{3}$.
(d) $f(z)=\cos x \cosh y-i \sin x \sinh y$.
30. Determine where $f^{\prime}(z)$ exists and find its value when
(a) $f(z)=\frac{1}{z}$.
(b) $f(z)=x^{2}+i y^{2}$.
(c) $f(z)=z \operatorname{Im}(z)$.
31. Show that each of these functions is differentiable in the indicated domain of definition, and find $f^{\prime}(z)$.
(a) $f(z)=\frac{1}{z^{4}}, z \neq 0$.
(b) $f(z)=\sqrt{r} e^{i \frac{\theta}{2}}, r>0, \alpha<\theta<\alpha+2 \pi$.
(c) $f(z)=e^{-\theta} \cos (\ln r)+i e^{-\theta} \sin (\ln r), r>0,0<$ $\theta<2 \pi$.
32. Use the Cauchy-Riemann conditions to determine where the following functions are differentiable, and evaluate the derivatives at those points where they exist.
(a) $f(z)=i z+4 i$.
(b) $f(z)=f(x, y)=\frac{y+i x}{x^{2}+y^{2}}$.
(c) $f(z)=-2(x y+x)+i\left(x^{2}-2 y-y^{2}\right)$.
(d) $f(z)=x^{3}-3 x^{2}-3 x y^{2}+3 y^{2}+i\left(3 x^{2} y-6 x y-y^{3}\right)$.
(e) $f(z)=x^{3}+i(1-y)^{3}$.
(f) $f(z)=z^{2}+z$.
(g) $f(z)=x^{2}+y^{2}+i 2 x y$.
(h) $f(z)=\left|z-(2+i)^{2}\right|$.
33. Find the constants a and b such that $f(z)=(2 x-$ $y)+i(a x+b y)$ is differentiable for all z.
34. Use any method to show that the following functions are nowhere differentiable.
(a) $h(z)=e^{y} \cos x+i e^{y} \sin x$.
(b) $g(z)=z+\bar{z}$.
35. Determine where the following functions are differentiable and where they are analytic. Explain!
(a) $f(z)=x^{3}+3 x y^{2}+i\left(y^{3}+3 x^{2} y\right)$.
(b) $f(z)=8 x-x^{3}-x y^{2}+i\left(x^{2} y+y^{3}-8 y\right)$.
(c) $f(z)=x^{2}-y^{2}+i 2|x y|$.
36. Let f be a nonconstant analytic function in the domain D. Show that the function $g(z)=\overline{f(z)}$ is not analytic in D.
37. Show that each of the following functions is entire.
(a) $f(z)=3 x+y+i(3 y-x)$.
(b) $f(z)=\sin x \cosh y+i \cos x \sinh y$.
(c) $f(z)=e^{-y} \sin x-i e^{-y} \cos x$.
(d) $f(z)=\left(z^{2}-2\right) e^{-x} e^{-i y}$.
38. Show that each of these functions is nowhere analytic.
(a) $f(z)=x y+i y$.
(b) $f(z)=2 x y+i\left(x^{2}-y^{2}\right)$.
(c) $f(z)=e^{y} e^{i x}$.
39. Does an analytic function $f(z)=u(x, y)+i v(x, y)$ exist for which $v(x, y)=x^{3}+y^{3}$? Why or why not?
40. (a) Show that $f(z)=x^{2}+i y^{2}$ is differentiable at all points on the line $y=x$.
(b) Show that it is nowhere analytic.
41. Assume that f is analytic in a region and that at every point, either $f=0$ or $f^{\prime}=0$. Show that f is constant.
42. Show that a nonconstant analytic function cannot map a region into a straight line or into a circular arc.
43. Show that there are no analytic functions $f=u+i v$ with $u(x, y)=x^{2}+y^{2}$.
44. Suppose f is an entire function of the form

$$
f(x, y)=u(x)+i v(y)
$$

Show that f is a linear polynomial.
45. Determine where the following functions are harmonic.
(a) $u(x, y)=e^{x} \cos y$ and $v(x, y)=e^{x} \sin y$.
(b) $u(x, y)=\ln \left(x^{2}+y^{2}\right)$ for $(x, y) \neq(0,0)$.
46. Let a, b, and c be real constants. Determine a relation among the coefficients that will guarantee that the function $\phi(x, y)=a x^{2}+b x y+c y^{2}$ is harmonic.
47. Let $v(x, y)=\arctan \frac{y}{x}$ for $x \neq 0$. Compute the partial derivatives of v, and verify that v satisfies Laplace's equation.
48. Find an analytic function $f(z)=u(x, y)+i v(x, y)$ for the following expressions.
(a) $u(x, y)=y^{3}-3 x^{2} y$.
(b) $u(x, y)=\sin y \sinh x$.
(c) $v(x, y)=e^{y} \sin x$.
(d) $v(x, y)=\sin x \cosh y$.
49. Assume that $u(x, y)$ is harmonic on a region D that is symmetric about the line $y=0$. Show that $U(x, y)=$ $u(x,-y)$ is harmonic on D.
50. Let v be a harmonic conjugate of u. Show that $-u$ is a harmonic conjugate of v.
51. Let v be a harmonic conjugate of u. Show that $u^{2}-v^{2}$ is a harmonic function.
52. Suppose that v is a harmonic conjugate of u and that u is a harmonic conjugate of v. Show that u and v must be constants functions.
53. Use the polar form of Laplace's equation to show that the following functions are harmonic.
(a) $u(r, \theta)=\left(r+\frac{1}{r}\right) \cos \theta$
(b) $v(r, \theta)=\left(r-\frac{1}{r}\right) \sin \theta$.
(c) $u(r, \theta)=r^{n} \cos n \theta$
(d) $v(r, \theta)=r^{n} \sin n \theta$.
54. Show that $u(x, y)$ is harmonic in some domain and find a harmonic conjugate $v(x, y)$ when
(a) $u(x, y)=2 x(1-y)$.
(b) $u(x, y)=2 x-x^{3}+3 x y^{2}$.
(c) $u(x, y)=\sinh x \sin y$.
(d) $u(x, y)=\frac{y}{x^{2}+y^{2}}$.
55. Show that if v_{1} and v_{2} are harmonic conjugates of u in a domain D, then $v_{1}(x, y)$ and $v_{2}(x, y)$ can differ at most by an additive constant.
56. Verify that the function $u(r, \theta)=\ln r$ is harmonic in the domain $r>0,0<\theta<2 \pi$ by showing that it satisfies the polar form of Laplace's equation. Then use a technique similar to the one used for harmonic functions in Cartesian coordinates, but involving the Cauchy-Riemann equations in polar form to derive a harmonic conjugate.
57. Find all analytic functions $f=u+i v$ with $u(x, y)=$ $x^{2}-y^{2}$.

