MCS 352 2009-2010 Spring
 Exercise Set II

1. Express the following functions of the form $u(x, y)+$ $i v(x, y)$.
(a) $f(z)=z^{3}$.
(b) $f(z)=\bar{z}^{2}+(2-3 i) z$.
(c) $f(z)=\frac{1}{z^{2}}$.
2. Express the following functions in the polar coordinate form $u(r, \theta)+i v(r, \theta)$.
(a) $f(z)=z^{5}+\bar{z}^{5}$.
(b) $f(z)=z^{5}+\bar{z}^{3}$.
(c) For what values of z are the above expressions valid? Why?
3. Let $w=f(z)=(3+4 i) z-2+i$.
(a) Find the image of the disk $|z-1|<1$.
(b) Find the image of the line $x=t, y=1-2 t$ for $-\infty<t<\infty$.
(c) Find the image of the half-plane $\operatorname{Im} z>1$.
4. Let $w=(2+i) z-2 i$. Find the triangle onto which the triangle with vertices $z_{1}=-2+i, z_{2}=-2+2 i$, and $2+i$ is mapped.
5. Find the linear transformations $w=f(z)$ that satisfy the following conditions.
(a) The points $z_{1}=2$ and $z_{2}=-3 i$ map onto $w_{1}=$ $1+i$ and $w_{2}=1$.
(b) The circle $|z|=1$ maps onto the circle $\mid w-3+$ $2 i \mid=5$, and $f(-i)=3+3 i$.
(c) The triangle with vertices $-4+2 i,-4+7 i$, and $1+2 i$ maps onto the triangle with vertices 1,0 , and $1+i$, respectively.
6. Write the function $f(z)=z^{3}+z+1$ in the form $f(z)=u(x, y)+i v(x, y)$.
7. Suppose that $f(z)=x^{2}-y^{2}-2 y+i(2 x-2 x y)$, where $z=x+i y$. Use the expressions

$$
x=\frac{z+\bar{z}}{2}, \quad y=\frac{z-\bar{z}}{2 i}
$$

to write $f(z)$ in terms of z, and simplify the result.
8. Find the images of the mapping $w=z^{2}$ in each case, and sketch the mapping.
(a) The triangle with vertices $0,2,2+2 i$.
(b) The infinite strip $\{(x, y) \mid 1<x<2\}$.
(c) The right half-plane region to the right of the hyperbola $x^{2}-y^{2}=1$.
(d) The first quadrant region between the hyperbolas $x y=\frac{1}{2}$ and $x y=4$.
9. For what values of z does $\left(z^{2}\right)^{\frac{1}{2}}=z$ hold if the principle value of the square root is to be used?
10. Sketch the set of points satisfying the following relations.
(a) $\operatorname{Re}\left(z^{2}\right)>4$.
(b) $\operatorname{Im}\left(z^{2}\right)>6$.
11. Find and illustrate the images of the following sets under the mapping $w=z^{\frac{1}{2}}$.
(a) $\left\{r e^{i \theta} \mid r>1, \frac{\pi}{3}<\theta<\frac{\pi}{2}\right\}$.
(b) $\left\{r e^{i \theta} \mid 1<r<9,0<\theta<\frac{2 \pi}{3}\right\}$.
(c) $\left\{r e^{i \theta} \mid r<4,-\pi<\theta<\frac{\pi}{2}\right\}$.
(d) The vertical line $\{(x, y) \mid x=4\}$.
(e) The infinite strip $\{(x, y) \mid 2<y<6\}$.
(f) The region to the right of the parabola $x=4-$ $\frac{y^{2}}{16}$.
12. Find the image of the right half-plane $\operatorname{Re}(z)>1$ under the mapping $w=z^{2}+2 z+1$.
13. Find the image of the following sets under the mapping $w=z^{3}$.
(a) $\left\{r e^{i \theta} \mid 1<r<2, \frac{\pi}{4}<\theta<\frac{\pi}{3}\right\}$.
(b) $\left\{r e^{i \theta} \mid r>3, \frac{2 \pi}{3}<\theta<\frac{3 \pi}{4}\right\}$.
14. Find the image of $\left\{r e^{i \theta} \mid r>2, \frac{\pi}{4}<\theta<\frac{\pi}{3}\right\}$ under the following mappings.
(a) z^{3}.
(b) z^{4}.
(c) z^{6}.
15. Find the image of the sector $r>0,-\pi<\theta<\frac{2 \pi}{3}$ under the following mappings.
(a) $z^{\frac{1}{2}}$.
(b) $z^{\frac{1}{3}}$.
(c) $z^{\frac{1}{4}}$.
16. Find the following limits.
(a) $\lim _{z \rightarrow 2+i}\left(z^{2}-4 z+2+5 i\right)$.
(b) $\lim _{z \rightarrow 1+i} \frac{z^{2}+z-2+i}{z^{2}-2 z+1}$.
(c) $\lim _{z \rightarrow 1+i} \frac{z^{2}+z-1-3 i}{z^{2}-2 z+2}$.
17. Determine where the following functions are continuous.
(a) $z^{4}-9 z^{2}+i z-2$.
(b) $\frac{z+1}{z^{2}+1}$.
(c) $\frac{z^{2}+6 z+5}{z^{2}+3 z+2}$.
(d) $\frac{z^{4}+1}{z^{2}+2 z+2}$.
(e) $\frac{x+i y}{x-1}$.
(f) $\frac{x+i y}{|z|-1}$.
18. Let $f(z)=\frac{z \operatorname{Re}(z)}{|z|}$ when $z \neq 0$, and let $f(0)=0$.

Show that $f(z)$ is continuous for all values of z.
19. Let $f(z)=\frac{z^{2}}{|z|^{2}}=\frac{x^{2}-y^{2}+i 2 x y}{x^{2}+y^{2}}$.
(a) Find $\lim _{z \rightarrow 0} f(z)$ as $z \rightarrow 0$ along the line $y=x$.
(b) Find $\lim _{z \rightarrow 0} f(z)$ as $z \rightarrow 0$ along the line $y=2 x$.
(c) Find $\lim _{z \rightarrow 0} f(z)$ as $z \rightarrow 0$ along the parabola $y=$ x^{2}.
(d) What can you conclude about the limit of $f(z)$ as $z \rightarrow 0$? Why?
20. Let $f(z)=f(x, y)=\frac{x y^{3}}{x^{2}+2 y^{6}}+i \frac{x^{3} y}{5 x^{6}+y^{2}}$ when $z \neq$ 0 , and let $f(0)=0$.
(a) Show that $\lim _{z \rightarrow 0} f(z)=f(0)=0$ if z approaches zero along any straight line that passes through the origin.
(b) Show that f is not continuous at the point 0 .
21. Does $\lim _{z \rightarrow-4} \operatorname{Arg}(z)$ exist? Why?
22. Let $f(z)=\frac{x^{2}+i y^{2}}{|z|^{2}}$ when $z \neq 0$, and let $f(0)=1$. Show that $f(z)$ is not continuous at $z_{0}=0$.
23. Let $f(z)=x e^{y}+i y^{2} e^{-x}$. Show that $f(z)$ is continuous for all values of z.
24. Let $f(z)=\frac{\operatorname{Re}(z)}{|z|}$ when $z \neq 0$, and let $f(0)=1$. Is $f(z)$ continuous at the origin?
25. Let $f(z)=\frac{(\operatorname{Re}(z))^{2}}{|z|}$ when $z \neq 0$, and let $f(0)=0$. Is $f(z)$ continuous at the origin?
26. Let $f_{1}(z)=|z|^{\frac{1}{3}} e^{i \frac{\operatorname{Arg}(z)}{3}}=r^{\frac{1}{3}} \cos \frac{\theta}{3}+i r^{\frac{1}{3}} \sin \frac{\theta}{3}$, where $|z|=r \neq 0$, and $\theta=\operatorname{Arg}(z) . f_{1}$ denotes the principal cube root function.
(a) Show that f_{1} is a branch of the multivalued cube root $f(z)=z^{\frac{1}{3}}$.
(b) What is the range of f_{1} ?
(c) Where is f_{1} continuous?
27. Let $f_{2}(z)=r^{\frac{1}{3}} \cos \left(\frac{\theta+2 \pi}{3}\right)+i r^{\frac{1}{3}} \sin \left(\frac{\theta+2 \pi}{3}\right)$, where $r>$ 0 , and $-\pi<\theta \leq \pi$.
(a) Show that f_{2} is a branch of the multivalued cube root $f(z)=z^{\frac{1}{3}}$.
(b) What is the range of f_{2} ?
(c) Where is f_{2} continuous?
(d) What is the branch point associated with f.
28. Find a branch of the multivalued cube root function that is different from those in Exercises 26 and 27. State the domain and range of the branch you find.
29. Let $f(z)=z^{\frac{1}{n}}$ denote the multivalued nth root, where n is a positive integer.
(a) Show that f is, in general an n-valued function.
(b) Write the principal nth root function.
(c) Write a branch of the multivalued function nth root function that is different from the one in part (b).
30. Limits involving ∞. The function $f(z)$ is said to have the limit L as z approaches ∞, and we write $\lim _{z \rightarrow \infty} f(z)=L$ if and only if for every $\epsilon>0$ there exists an $R>0$ such that $|f(z)-L|<\epsilon$ whenever $|z|>R$. Likewise, $\lim _{z \rightarrow z_{0}} f(z)=\infty$ if and only if for every $R>0$ there exists $\delta>0$ such that $|f(z)|>R$ whenever $0<\left|z-z_{0}\right|<\delta$. Use this definition to
(a) show that $\lim _{z \rightarrow \infty} \frac{1}{z}=0$.
(b) show that $\lim _{z \rightarrow 0} \frac{1}{z}=\infty$.
31. Show that the reciprocal transformation $w=\frac{1}{z}$ maps the vertical strip given by $0<x<\frac{1}{2}$ onto the region in the right half-plane $\operatorname{Re}(w)>0$ that lies outside the disk $\{w:|w-1|<1\}$.
32. Find the image of the quadrant $x>1, y>1$ under the mapping $\frac{1}{z}$.
33. Use the definition in Exercise 30 to prove that $\lim _{z \rightarrow \infty} \frac{z+1}{z-1}=1$.
34. Show that $z=x+i y$ is mapped onto the point

$$
\left(\frac{x}{x^{2}+y^{2}+1}, \frac{y}{x^{2}+y^{2}+1}, \frac{x^{2}+y^{2}}{x^{2}+y^{2}+1}\right)
$$

on the Riemann sphere.

