MCS 352 2009-2010 Spring

Exercise Set II

- 1. Express the following functions of the form u(x,y) + iv(x,y).
 - (a) $f(z) = z^3$.
 - (b) $f(z) = \bar{z}^2 + (2 3i)z$.
 - (c) $f(z) = \frac{1}{z^2}$.
- 2. Express the following functions in the polar coordinate form $u(r,\theta)+iv(r,\theta)$.
 - (a) $f(z) = z^5 + \bar{z}^5$.
 - (b) $f(z) = z^5 + \bar{z}^3$.
 - (c) For what values of z are the above expressions valid? Why?
- 3. Let w = f(z) = (3+4i)z 2 + i.
 - (a) Find the image of the disk |z-1| < 1.
 - (b) Find the image of the line x = t, y = 1 2t for $-\infty < t < \infty$.
 - (c) Find the image of the half-plane Im z > 1.
- 4. Let w = (2+i)z 2i. Find the triangle onto which the triangle with vertices $z_1 = -2 + i$, $z_2 = -2 + 2i$, and 2 + i is mapped.
- 5. Find the linear transformations w = f(z) that satisfy the following conditions.
 - (a) The points $z_1 = 2$ and $z_2 = -3i$ map onto $w_1 = 1 + i$ and $w_2 = 1$.
 - (b) The circle |z| = 1 maps onto the circle |w 3 + 2i| = 5, and f(-i) = 3 + 3i.
 - (c) The triangle with vertices -4 + 2i, -4 + 7i, and 1 + 2i maps onto the triangle with vertices 1, 0, and 1 + i, respectively.
- 6. Write the function $f(z) = z^3 + z + 1$ in the form f(z) = u(x, y) + iv(x, y).
- 7. Suppose that $f(z) = x^2 y^2 2y + i(2x 2xy)$, where z = x + iy. Use the expressions

$$x = \frac{z + \bar{z}}{2}, \quad y = \frac{z - \bar{z}}{2i}$$

to write f(z) in terms of z, and simplify the result.

- 8. Find the images of the mapping $w=z^2$ in each case, and sketch the mapping.
 - (a) The triangle with vertices 0, 2, 2 + 2i.
 - (b) The infinite strip $\{(x,y) \mid 1 < x < 2\}$.
 - (c) The right half-plane region to the right of the hyperbola $x^2 y^2 = 1$.

- (d) The first quadrant region between the hyperbolas $xy = \frac{1}{2}$ and xy = 4.
- 9. For what values of z does $(z^2)^{\frac{1}{2}} = z$ hold if the principle value of the square root is to be used?
- 10. Sketch the set of points satisfying the following relations.
 - (a) $Re(z^2) > 4$.
 - (b) $\text{Im}(z^2) > 6$.
- 11. Find and illustrate the images of the following sets under the mapping $w=z^{\frac{1}{2}}.$

(a)
$$\left\{ re^{i\theta} \mid r > 1, \ \frac{\pi}{3} < \theta < \frac{\pi}{2} \right\}$$
.

(b)
$$\left\{ re^{i\theta} \mid 1 < r < 9, \ 0 < \theta < \frac{2\pi}{3} \right\}$$
.

(c)
$$\{re^{i\theta} \mid r < 4, -\pi < \theta < \frac{\pi}{2}\}.$$

- (d) The vertical line $\{(x,y) \mid x=4\}$.
- (e) The infinite strip $\{(x,y) \mid 2 < y < 6\}$.
- (f) The region to the right of the parabola $x = 4 \frac{y^2}{16}$.
- 12. Find the image of the right half-plane Re(z) > 1 under the mapping $w = z^2 + 2z + 1$.
- 13. Find the image of the following sets under the mapping $w=z^3$.

(a)
$$\left\{ re^{i\theta} \mid 1 < r < 2, \ \frac{\pi}{4} < \theta < \frac{\pi}{3} \right\}$$
.

(b)
$$\left\{ re^{i\theta} \mid r > 3, \ \frac{2\pi}{3} < \theta < \frac{3\pi}{4} \right\}$$
.

- 14. Find the image of $\left\{re^{i\theta} \mid r > 2, \frac{\pi}{4} < \theta < \frac{\pi}{3}\right\}$ under the following mappings.
 - (a) z^3 .
 - (b) z^4 .
 - (c) z^6 .
- 15. Find the image of the sector r > 0, $-\pi < \theta < \frac{2\pi}{3}$ under the following mappings.
 - (a) $z^{\frac{1}{2}}$.
 - (b) $z^{\frac{1}{3}}$.
 - (c) $z^{\frac{1}{4}}$.
- 16. Find the following limits.

- (a) $\lim_{z \to 2+i} (z^2 4z + 2 + 5i)$.
- (b) $\lim_{z \to 1+i} \frac{z^2 + z 2 + i}{z^2 2z + 1}$.
- (c) $\lim_{z \to 1+i} \frac{z^2 + z 1 3i}{z^2 2z + 2}$.
- 17. Determine where the following functions are continuous.
 - (a) $z^4 9z^2 + iz 2$.
 - (b) $\frac{z+1}{z^2+1}$.
 - (c) $\frac{z^2 + 6z + 5}{z^2 + 3z + 2}$.
 - (d) $\frac{z^4+1}{z^2+2z+2}$.
 - (e) $\frac{x+iy}{x-1}$.
 - (f) $\frac{x+iy}{|z|-1}.$
- 18. Let $f(z) = \frac{z \operatorname{Re}(z)}{|z|}$ when $z \neq 0$, and let f(0) = 0. Show that f(z) is continuous for all values of z.
- 19. Let $f(z) = \frac{z^2}{|z|^2} = \frac{x^2 y^2 + i2xy}{x^2 + y^2}$.
 - (a) Find $\lim_{z\to 0} f(z)$ as $z\to 0$ along the line y=x.
 - (b) Find $\lim_{z\to 0} f(z)$ as $z\to 0$ along the line y=2x.
 - (c) Find $\lim_{z\to 0} f(z)$ as $z\to 0$ along the parabola $y=x^2$
 - (d) What can you conclude about the limit of f(z) as $z \to 0$? Why?
- 20. Let $f(z) = f(x,y) = \frac{xy^3}{x^2 + 2y^6} + i\frac{x^3y}{5x^6 + y^2}$ when $z \neq 0$, and let f(0) = 0.
 - (a) Show that $\lim_{z\to 0} f(z) = f(0) = 0$ if z approaches zero along any straight line that passes through the origin.
 - (b) Show that f is not continuous at the point 0.
- 21. Does $\lim_{z \to -4} \operatorname{Arg}(z)$ exist? Why?
- 22. Let $f(z) = \frac{x^2 + iy^2}{|z|^2}$ when $z \neq 0$, and let f(0) = 1. Show that f(z) is not continuous at $z_0 = 0$.
- 23. Let $f(z) = xe^y + iy^2e^{-x}$. Show that f(z) is continuous for all values of z.
- 24. Let $f(z) = \frac{\text{Re}(z)}{|z|}$ when $z \neq 0$, and let f(0) = 1. Is f(z) continuous at the origin?
- 25. Let $f(z) = \frac{(\text{Re}(z))^2}{|z|}$ when $z \neq 0$, and let f(0) = 0. Is f(z) continuous at the origin?

- 26. Let $f_1(z) = |z|^{\frac{1}{3}}e^{i\frac{\operatorname{Arg}(z)}{3}} = r^{\frac{1}{3}}\cos\frac{\theta}{3} + ir^{\frac{1}{3}}\sin\frac{\theta}{3}$, where $|z| = r \neq 0$, and $\theta = \operatorname{Arg}(z)$. f_1 denotes the principal cube root function.
 - (a) Show that f_1 is a branch of the multivalued cube root $f(z) = z^{\frac{1}{3}}$.
 - (b) What is the range of f_1 ?
 - (c) Where is f_1 continuous?
- 27. Let $f_2(z) = r^{\frac{1}{3}} \cos\left(\frac{\theta + 2\pi}{3}\right) + ir^{\frac{1}{3}} \sin\left(\frac{\theta + 2\pi}{3}\right)$, where r > 0, and $-\pi < \theta \le \pi$.
 - (a) Show that f_2 is a branch of the multivalued cube root $f(z) = z^{\frac{1}{3}}$.
 - (b) What is the range of f_2 ?
 - (c) Where is f_2 continuous?
 - (d) What is the branch point associated with f.
- 28. Find a branch of the multivalued cube root function that is different from those in Exercises 26 and 27. State the domain and range of the branch you find.
- 29. Let $f(z) = z^{\frac{1}{n}}$ denote the multivalued nth root, where n is a positive integer.
 - (a) Show that f is, in general an n-valued function.
 - (b) Write the principal nth root function.
 - (c) Write a branch of the multivalued function *n*th root function that is different from the one in part (b).
- 30. Limits involving ∞ . The function f(z) is said to have the limit L as z approaches ∞ , and we write $\lim_{z\to\infty} f(z) = L$ if and only if for every $\epsilon > 0$ there exists an R > 0 such that $|f(z) L| < \epsilon$ whenever |z| > R. Likewise, $\lim_{z\to z_0} f(z) = \infty$ if and only if for every R > 0 there exists $\delta > 0$ such that |f(z)| > R whenever $0 < |z z_0| < \delta$. Use this definition to
 - (a) show that $\lim_{z \to \infty} \frac{1}{z} = 0$.
 - (b) show that $\lim_{z \to 0} \frac{1}{z} = \infty$.
- 31. Show that the reciprocal transformation $w = \frac{1}{z}$ maps the vertical strip given by $0 < x < \frac{1}{2}$ onto the region in the right half-plane Re(w) > 0 that lies outside the disk $\{w : |w-1| < 1\}$.
- 32. Find the image of the quadrant $x>1,\ y>1$ under the mapping $\frac{1}{z}.$
- 33. Use the definition in Exercise 30 to prove that $\lim_{z\to\infty}\frac{z+1}{z-1}=1.$
- 34. Show that z = x + iy is mapped onto the point

$$\left(\frac{x}{x^2+y^2+1}, \frac{y}{x^2+y^2+1}, \frac{x^2+y^2}{x^2+y^2+1}\right)$$

on the Riemann sphere.