MCS 352 2009-2010 Spring Exercise Set XIV

- 1. Determine the angle of rotation at the point z = 2 + iwhen the transformation is $w = z^2$. Show that the scale factor of the transformation at that point is $2\sqrt{5}$.
- 2. What angle of rotation is produced by the transformation $w = \frac{1}{z}$ at the point z = 1? z = i?
- 3. Show that under the transformation $w = \frac{1}{z}$, the images of the lines y = x 1 and y = 0 are the circle $u^2 + v^2 u v = 0$ and the line v = 0, respectively. Sketch all four curves, determine corresponding directions along them, and verify the conformality of the mapping at the point z = 1.
- 4. Show that the angle of rotation at a nonzero point $z_0 = r_0 \exp(i\theta_0)$ under the transformation $w = z^n$, $n \in \mathbb{N}$ is $(n-1)\theta_0$. Determine the scale factor of the transformation at that point.
- 5. Show that the transformation $w = \sin z$ is conformal at all points except $z = \frac{\pi}{2} + n\pi$, $n \in \mathbb{Z}$.
- 6. Find the local inverse of the transformation $w = z^2$ at the point $z_0 = 2$, $z_0 = -2$, $z_0 = -i$.
- 7. State where the following mappings are conformal.
 - (a) $w = \exp z$.
 - (b) $w = \sin z$.
 - (c) $w = z^2 + 2z$.
 - (d) $w = \exp(z^2 + 1).$ (e) $w = \frac{1}{z}.$ (f) $w = \frac{z+1}{z-1}.$
- 8. Find the angle of rotation $\alpha = \operatorname{Arg} f'(z)$ and the scale factor |f'(z)| of the mapping w = f(z) at the indicated points.
 - (a) $w = \frac{1}{z}$ at the points 1, 1 + i, and i. (b) $w = \ln r + i\theta$, where $-\frac{\pi}{2} < \theta < \frac{3\pi}{2}$ at the points 1, 1 + i, i, and -1.

- (c) $w = r^{\frac{1}{2}} \cos \frac{\theta}{2} + ir^{\frac{1}{2}} \sin \frac{\theta}{2}$, where $-\pi < \theta < \pi$, at the points i, 1, -i, and 3 + 4i.
- (d) $\sin z$ at the points $\frac{\pi}{2} + i$, 0, and $-\frac{\pi}{2} + i$.

9. If
$$w = S(z) = \frac{(1-i)z+2}{(1+i)z+2}$$
, find $S^{-1}(w)$.

10. If
$$w = S(z) = \frac{i+z}{i-z}$$
, find $S^{-1}(w)$.

- 11. Find the image of the right half plane $\operatorname{Re} z > 0$ under $\frac{i(1-z)}{1+z}$.
- 12. Show that the bilinear transformation $w = \frac{i(1-z)}{1+z}$ maps the portion of the disk |z| < 1 that lies in the upper half plane Im z > 0 on to the first quadrant u > 0, v > 0.
- 13. Find the image of the upper half plane Im z > 0 under the transformation $w = \frac{(1-i)z+2}{(1+i)z+2}$.
- 14. Find the bilinear transformation w = S(z) that maps the points $z_1 = 0$, $z_2 = i$, and $z_3 = -i$ onto $w_1 = -1$, $w_2 = 1$, and $w_3 = 0$, respectively.
- 15. Find the bilinear transformation w = S(z) that maps the points $z_1 = -i$, $z_2 = 0$, and $z_3 = i$ onto $w_1 = -1$, $w_2 = i$, and $w_3 = 1$, respectively.
- 16. Find the bilinear transformation w = S(z) that maps the points $z_1 = 0$, $z_2 = 1$, and $z_3 = 2$ onto $w_1 = 0$, $w_2 = 1$, and $w_3 = \infty$, respectively.
- 17. Find the bilinear transformation w = S(z) that maps the points $z_1 = 1$, $z_2 = i$, and $z_3 = -1$ onto $w_1 = 0$, $w_2 = 1$, and $w_3 = \infty$, respectively.
- 18. Show that the transformation $w = \frac{i+z}{i-z}$ maps the unit disk |z| < 1 onto the right half plane Re z > 0.
- 19. Find the image of the lower half plane Im z < 0 under $w = \frac{i+z}{i-z}$.

- 20. If $S_1(z) = \frac{z-2}{z+1}$ and $S_2(z) = \frac{z}{z+3}$, find $S_1(S_2(z))$ and $S_2(S_1(z))$.
- 21. Find the image of the quadrant x > 0, y > 0 under $w = \frac{z-1}{z+1}$.
- 22. Find the image of the horizontal strip 0 < y < 2under $w = \frac{z}{z-i}$.
- 23. Show that the bilinear transformation $w = S(z) = \frac{az+b}{cz+d}$ is conformal at all points $z \neq -\frac{d}{c}$.
- 24. A fixed point of a mapping w = f(z) is a point z_0 such that $f(z_0) = z_0$. Show that a bilinear transformation can have at most two fixed points.
- 25. Find the fixed points of $w = \frac{z-1}{z+1}$, $w = \frac{4z+3}{2z-1}$.
- 26. Find the image of the semi-infinite strip $0 < x < \frac{\pi}{2}$, y > 0, under the transformation $w = \exp(iz)$.
- 27. Find the image of the rectangle $0 < x < \ln 2$, $0 < y < \frac{\pi}{2}$, under the transformation $w = \exp z$.
- 28. Find the image of the first quadrant x > 0, y > 0, under $w = \frac{2}{\pi} \log z$.
- 29. Find the image of the annulus 1 < |z| < e under $w = \log z$.
- 30. Show that $w = \frac{2-z^2}{z^2}$ maps the portion of the right half plane Re z > 0 that lies to the right of the hyperbola $x^2 y^2 = 1$ onto the unit disk |w| < 1.
- 31. Show that the function $w = \frac{e^z i}{e^z + i}$ maps the horizontal strip $-\pi < \text{Im } z < 0$ onto the region 1 < |w|.
- 32. Show that the function $w = \frac{e^z i}{e^z + i}$ maps the horizontal strip $|y| < \frac{\pi}{2}$ onto the unit disk |w| < 1.
- 33. Find the image of the upper half plane $\operatorname{Im} z > 0$ under $w = \operatorname{Log} \frac{1+z}{1-z}$.
- 34. Find the image of the portion of the upper half plane $\operatorname{Im} z > 0$ that lies outside the circle |z| = 1 under the transformation $w = \operatorname{Log} \frac{1+z}{1-z}$.
- 35. Show that the function $w = \frac{(1+z)^2}{(1-z)^2}$ maps the portion of the disk |z| < 1 that lies in the first quadrant onto the portion of the upper half plane Im w > 0 that lies outside the unit disk.

- 36. Find the image of the upper half plane Im z > 0 under $w = \text{Log}(1 z^2)$.
- 37. Show that the transformation $w = \frac{z^2 1}{z^2 + 1}$ maps the portion of the first quadrant x > 0, y > 0, that lies outside the circle |z| = 1 onto the first quadrant u > 0, v > 0.
- 38. Find the image of the sector r > 0, $0 < \theta < \frac{\pi}{4}$, under $w = \frac{i z^4}{i + z^4}$.
- 39. Find the image of the infinite strip $\{z : 0 < \text{Re } z < 1\}$ under the mapping w = iz.
- 40. Find the image of the half plane $\{z : \operatorname{Re} z > 0\}$ under the mapping w = iz + i.
- 41. Find the image of the half plane $\{z : \text{Im } z > 0\}$ under the mapping w = (1+i)z.
- 42. Find the image of the half plane $\{z : \text{Im } z > 1\}$ under the mapping w = (1 i)z.
- 43. Find the image of the semi-infinite strip $\{z : \operatorname{Re} z > 0, 0 < \operatorname{Im} z < 2\}$ under the mapping w = iz + 1.
- 44. Show that when $c_1 < 0$, the image of the half plane $\{z : \operatorname{Re} z < c_1\}$ under the transformation $w = \frac{1}{z}$ is the interior of a circle. What is the image when $c_1 = 0$?
- 45. Show that the image of the half plane $\{z : \text{Im } z > c_2\}$ under the transformation $w = \frac{1}{z}$ is the interior of a circle, provided $c_2 > 0$. Find the image when $c_2 < 0$; also find it when $c_2 = 0$.
- 46. Find the image of the infinite strip $0 < \text{Im} z < \frac{1}{2c}$ under the transformation $w = \frac{1}{z}$. Sketch the strip and its image.
- 47. Find the image of the quadrant $\operatorname{Re} z > 1$, $\operatorname{Im} z > 0$ under the transformation $w = \frac{1}{z}$.
- 48. Find the image of the semi-infinite strip $\operatorname{Re} z > 0$, $0 < \operatorname{Im} z < 1$ when $w = \frac{i}{z}$. Sketch the strip and its image.
- 49. Find the bilinear transformation that maps the points $z_1 = 2, z_2 = i, z_3 = -2$ onto the points $w_1 = 1, w_2 = i, w_3 = -1$.
- 50. Find the bilinear transformation that maps the points $z_1 = -i$, $z_2 = 0$, $z_3 = i$ onto the points $w_1 = -1$, $w_2 = i$, $w_3 = 1$. Into what curve is the imaginary axis Re z = 0 transformed?

- 51. Find the bilinear transformation that maps the points $z_1 = \infty$, $z_2 = i$, $z_3 = 0$ onto the points $w_1 = 0$, $w_2 = 1$, $w_3 = \infty$.
- 52. Find the bilinear transformation that maps distinct points z_1 , z_2 , z_3 onto the points $w_1 = 0$, $w_2 = 1$, $w_3 = \infty$.
- 53. Show that a composition of two bilinear transformations is again a bilinear transformation.
- 54. Show that $\frac{i-z}{i+z}$ maps the half plane Im z > 0 onto the disk |w| < 1.
- 55. Show that $\frac{z-1}{z+1}$ maps the half plane $\operatorname{Re} z > 0$ onto the disk |w| < 1.
- 56. By finding the inverse of the transformation $\frac{i-z}{i+z}$, show that $i\frac{1-z}{1+z}$ maps the disk |z| < 1 onto the half plane Im w > 0.
- 57. Show that the bilinear transformation $\frac{z-2}{z}$ can be written $z_1 = z 1$, $z_2 = i\frac{1-z_1}{1+z_1}$, $w = iz_2$. Then with the aid of the result in Exercise 56, verify that it maps the disk |z-1| < 1 onto the left half plane Re w < 0.
- 58. Map $\mathbb{C} \setminus \{z : -1 \le z \le 1\}$ onto the upper half plane $\{w : \operatorname{Im} w > 0\}.$
- 59. Find the linear fractional transformation that maps the region $\{z : |z 2| < 2\}$ onto the right half plane $\{w : \text{Re } z > 0\}$ in such a way that 1 and 0 are the fixed points of the transformation.
- 60. Find the linear fractional transformation w = w(z) that maps $\operatorname{Re} z > 1$ onto |w 2| < 2 so that z = 2 is a fixed point and w(1) = 0.