MCS 352 2009-2010 Spring
 Exercise Set XIV

1. Determine the angle of rotation at the point $z=2+i$ when the transformation is $w=z^{2}$. Show that the scale factor of the transformation at that point is $2 \sqrt{5}$.
2. What angle of rotation is produced by the transformation $w=\frac{1}{z}$ at the point $z=1 ? z=i ?$
3. Show that under the transformation $w=\frac{1}{z}$, the images of the lines $y=x-1$ and $y=0$ are the circle $u^{2}+v^{2}-u-v=0$ and the line $v=0$, respectively. Sketch all four curves, determine corresponding directions along them, and verify the conformality of the mapping at the point $z=1$.
4. Show that the angle of rotation at a nonzero point $z_{0}=r_{0} \exp \left(i \theta_{0}\right)$ under the transformation $w=$ $z^{n}, n \in \mathbb{N}$ is $(n-1) \theta_{0}$. Determine the scale factor of the transformation at that point.
5. Show that the transformation $w=\sin z$ is conformal at all points except $z=\frac{\pi}{2}+n \pi, n \in \mathbb{Z}$.
6. Find the local inverse of the transformation $w=z^{2}$ at the point $z_{0}=2, z_{0}=-2, z_{0}=-i$.
7. State where the following mappings are conformal.
(a) $w=\exp z$.
(b) $w=\sin z$.
(c) $w=z^{2}+2 z$.
(d) $w=\exp \left(z^{2}+1\right)$.
(e) $w=\frac{1}{z}$.
(f) $w=\frac{z+1}{z-1}$.
8. Find the angle of rotation $\alpha=\operatorname{Arg} f^{\prime}(z)$ and the scale factor $\left|f^{\prime}(z)\right|$ of the mapping $w=f(z)$ at the indicated points.
(a) $w=\frac{1}{z}$ at the points $1,1+i$, and i.
(b) $w=\ln r+i \theta$, where $-\frac{\pi}{2}<\theta<\frac{3 \pi}{2}$ at the points $1,1+i, i$, and -1 .
(c) $w=r^{\frac{1}{2}} \cos \frac{\theta}{2}+i r^{\frac{1}{2}} \sin \frac{\theta}{2}$, where $-\pi<\theta<\pi$, at the points $i, 1,-i$, and $3+4 i$.
(d) $\sin z$ at the points $\frac{\pi}{2}+i, 0$, and $-\frac{\pi}{2}+i$.
9. If $w=S(z)=\frac{(1-i) z+2}{(1+i) z+2}$, find $S^{-1}(w)$.
10. If $w=S(z)=\frac{i+z}{i-z}$, find $S^{-1}(w)$.
11. Find the image of the right half plane $\operatorname{Re} z>0$ under $\frac{i(1-z)}{1+z}$.
12. Show that the bilinear transformation $w=\frac{i(1-z)}{1+z}$ maps the portion of the disk $|z|<1$ that lies in the upper half plane $\operatorname{Im} z>0$ on to the first quadrant $u>0, v>0$.
13. Find the image of the upper half plane $\operatorname{Im} z>0$ under the transformation $w=\frac{(1-i) z+2}{(1+i) z+2}$.
14. Find the bilinear transformation $w=S(z)$ that maps the points $z_{1}=0, z_{2}=i$, and $z_{3}=-i$ onto $w_{1}=-1$, $w_{2}=1$, and $w_{3}=0$, respectively.
15. Find the bilinear transformation $w=S(z)$ that maps the points $z_{1}=-i, z_{2}=0$, and $z_{3}=i$ onto $w_{1}=-1$, $w_{2}=i$, and $w_{3}=1$, respectively.
16. Find the bilinear transformation $w=S(z)$ that maps the points $z_{1}=0, z_{2}=1$, and $z_{3}=2$ onto $w_{1}=0$, $w_{2}=1$, and $w_{3}=\infty$, respectively.
17. Find the bilinear transformation $w=S(z)$ that maps the points $z_{1}=1, z_{2}=i$, and $z_{3}=-1$ onto $w_{1}=0$, $w_{2}=1$, and $w_{3}=\infty$, respectively.
18. Show that the transformation $w=\frac{i+z}{i-z}$ maps the unit disk $|z|<1$ onto the right half plane $\operatorname{Re} z>0$.
19. Find the image of the lower half plane $\operatorname{Im} z<0$ under $w=\frac{i+z}{i-z}$.
20. If $S_{1}(z)=\frac{z-2}{z+1}$ and $S_{2}(z)=\frac{z}{z+3}$, find $S_{1}\left(S_{2}(z)\right)$ and $S_{2}\left(S_{1}(z)\right)$.
21. Find the image of the quadrant $x>0, y>0$ under $w=\frac{z-1}{z+1}$.
22. Find the image of the horizontal strip $0<y<2$ under $w=\frac{z}{z-i}$.
23. Show that the bilinear transformation $w=S(z)=$ $\frac{a z+b}{c z+d}$ is conformal at all points $z \neq-\frac{d}{c}$.
24. A fixed point of a mapping $w=f(z)$ is a point z_{0} such that $f\left(z_{0}\right)=z_{0}$. Show that a bilinear transformation can have at most two fixed points.
25. Find the fixed points of $w=\frac{z-1}{z+1}, w=\frac{4 z+3}{2 z-1}$.
26. Find the image of the semi-infinite strip $0<x<$ $\frac{\pi}{2}, y>0$, under the transformation $w=\exp (i z)$.
27. Find the image of the rectangle $0<x<\ln 2,0<$ $y<\frac{\pi}{2}$, under the transformation $w=\exp z$.
28. Find the image of the first quadrant $x>0, y>0$, under $w=\frac{2}{\pi} \log z$.
29. Find the image of the annulus $1<|z|<e$ under $w=\log z$.
30. Show that $w=\frac{2-z^{2}}{z^{2}}$ maps the portion of the right half plane $\operatorname{Re} z>0$ that lies to the right of the hyperbola $x^{2}-y^{2}=1$ onto the unit disk $|w|<1$.
31. Show that the function $w=\frac{e^{z}-i}{e^{z}+i}$ maps the horizontal strip $-\pi<\operatorname{Im} z<0$ onto the region $1<|w|$.
32. Show that the function $w=\frac{e^{z}-i}{e^{z}+i}$ maps the horizontal strip $|y|<\frac{\pi}{2}$ onto the unit disk $|w|<1$.
33. Find the image of the upper half plane $\operatorname{Im} z>0$ under $w=\log \frac{1+z}{1-z}$.
34. Find the image of the portion of the upper half plane $\operatorname{Im} z>0$ that lies outside the circle $|z|=1$ under the transformation $w=\log \frac{1+z}{1-z}$.
35. Show that the function $w=\frac{(1+z)^{2}}{(1-z)^{2}}$ maps the portion of the disk $|z|<1$ that lies in the first quadrant onto the portion of the upper half plane $\operatorname{Im} w>0$ that lies outside the unit disk.
36. Find the image of the upper half plane $\operatorname{Im} z>0$ under $w=\log \left(1-z^{2}\right)$.
37. Show that the transformation $w=\frac{z^{2}-1}{z^{2}+1}$ maps the portion of the first quadrant $x>0, y>0$, that lies outside the circle $|z|=1$ onto the first quadrant $u>$ $0, v>0$.
38. Find the image of the sector $r>0,0<\theta<\frac{\pi}{4}$, under $w=\frac{i-z^{4}}{i+z^{4}}$.
39. Find the image of the infinite strip $\{z: 0<\operatorname{Re} z<1\}$ under the mapping $w=i z$.
40. Find the image of the half plane $\{z: \operatorname{Re} z>0\}$ under the mapping $w=i z+i$.
41. Find the image of the half plane $\{z: \operatorname{Im} z>0\}$ under the mapping $w=(1+i) z$.
42. Find the image of the half plane $\{z: \operatorname{Im} z>1\}$ under the mapping $w=(1-i) z$.
43. Find the image of the semi-infinite strip $\{z: \operatorname{Re} z>$ $0,0<\operatorname{Im} z<2\}$ under the mapping $w=i z+1$.
44. Show that when $c_{1}<0$, the image of the half plane $\left\{z: \operatorname{Re} z<c_{1}\right\}$ under the transformation $w=\frac{1}{z}$ is the interior of a circle. What is the image when $c_{1}=0$?
45. Show that the image of the half plane $\left\{z: \operatorname{Im} z>c_{2}\right\}$ under the transformation $w=\frac{1}{z}$ is the interior of a circle, provided $c_{2}>0$. Find the image when $c_{2}<0$; also find it when $c_{2}=0$.
46. Find the image of the infinite strip $0<\operatorname{Im} z<\frac{1}{2 c}$ under the transformation $w=\frac{1}{z}$. Sketch the strip and its image.
47. Find the image of the quadrant $\operatorname{Re} z>1, \operatorname{Im} z>0$ under the transformation $w=\frac{1}{z}$.
48. Find the image of the semi-infinite strip $\operatorname{Re} z>0$, $0<\operatorname{Im} z<1$ when $w=\frac{i}{z}$. Sketch the strip and its image.
49. Find the bilinear transformation that maps the points $z_{1}=2, z_{2}=i, z_{3}=-2$ onto the points $w_{1}=1$, $w_{2}=i, w_{3}=-1$.
50. Find the bilinear transformation that maps the points $z_{1}=-i, z_{2}=0, z_{3}=i$ onto the points $w_{1}=-1$, $w_{2}=i, w_{3}=1$. Into what curve is the imaginary axis $\operatorname{Re} z=0$ transformed?
51. Find the bilinear transformation that maps the points $z_{1}=\infty, z_{2}=i, z_{3}=0$ onto the points $w_{1}=0$, $w_{2}=1, w_{3}=\infty$.
52. Find the bilinear transformation that maps distinct points z_{1}, z_{2}, z_{3} onto the points $w_{1}=0, w_{2}=1$, $w_{3}=\infty$.
53. Show that a composition of two bilinear transformations is again a bilinear transformation.
54. Show that $\frac{i-z}{i+z}$ maps the half plane $\operatorname{Im} z>0$ onto the disk $|w|<1$.
55. Show that $\frac{z-1}{z+1}$ maps the half plane $\operatorname{Re} z>0$ onto the disk $|w|<1$.
56. By finding the inverse of the transformation $\frac{i-z}{i+z}$, show that $i \frac{1-z}{1+z}$ maps the disk $|z|<1$ onto the half plane $\operatorname{Im} w>0$.
57. Show that the bilinear transformation $\frac{z-2}{z}$ can be written $z_{1}=z-1, \quad z_{2}=i \frac{1-z_{1}}{1+z_{1}}, w=i z_{2}$. Then with the aid of the result in Exercise 56, verify that it maps the disk $|z-1|<1$ onto the left half plane $\operatorname{Re} w<0$.
58. Map $\mathbb{C} \backslash\{z:-1 \leq z \leq 1\}$ onto the upper half plane $\{w: \operatorname{Im} w>0\}$.
59. Find the linear fractional transformation that maps the region $\{z:|z-2|<2\}$ onto the right half plane $\{w: \operatorname{Re} z>0\}$ in such a way that 1 and 0 are the fixed points of the transformation.
60. Find the linear fractional transformation $w=w(z)$ that maps $\operatorname{Re} z>1$ onto $|w-2|<2$ so that $z=2$ is a fixed point and $w(1)=0$.
