MCS 352 2009-2010 Spring
Exercise Set XIII

. Let C'y denote the positively oriented boundary of the square whose edges lie along the lines
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where N is a positive integer. Show that
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Then, showing that the value of this integral tends to zero as N tends to infinity, point out how it follows that
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. Let f(z) be such that along the path C, described in Exercise 1, | f(z)| < T2 where k > 1 and M are constants
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independent of N. Prove that

Z f(n) = —{sum of residues of wcot wzf(z) at the poles of f(z)}
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. If f(2) satisfies the same conditions given in Exercise 2, prove that

[e.e]
Z (=1)" f(n) = —{sum of residues of 7 cscmzf(z) at the poles of f(z)}
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9. Prove that
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10. Use the theorem involving a single residue, to evaluate the integral of each of these functions around the circle
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13. Prove that the sum of the residues of the function

|z| = 2 in the positive sense:
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Let the degrees of the polynomials
P(z)=ap+a1z+ az® + -+ anz", an #0

and
Q(Z):b0+blZ+b222++bmzm7 bm#O

be such that m > n + 2. Use the theorem involving a single residue, to show that if all of the zeros of Q(z) are
interior to a simple closed contour C, then
P(z)
dz = 0.
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Use the theorem involving a single residue, to evaluate the integral of f(z) around the positively oriented circle
|z| = 3 when
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at all the poles is 3.
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Evaluate 55 z2 3y 5) dz.

Evaluate m dz.
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Let F(s) be the Laplace transform of f(¢). Using residues, find f(t) whenever
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