MCS 352 2009-2010 Spring Exercise Set XIII

1. Let C_N denote the positively oriented boundary of the square whose edges lie along the lines

$$x = \pm \left(N + \frac{1}{2}\right)\pi$$
 and $y = \pm \left(N + \frac{1}{2}\right)\pi$,

where N is a positive integer. Show that

$$\oint_{C_N} \frac{dz}{z^2 \sin z} = 2\pi i \left[\frac{1}{6} + 2 \sum_{n=1}^N \frac{(-1)^n}{n^2 \pi^2} \right].$$

Then, showing that the value of this integral tends to zero as N tends to infinity, point out how it follows that

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12}.$$

2. Let f(z) be such that along the path C_N , described in Exercise 1, $|f(z)| \leq \frac{M}{|z|^k}$ where k > 1 and M are constants independent of N. Prove that

$$\sum_{n=-\infty}^{\infty} f(n) = -\{\text{sum of residues of } \pi \cot \pi z f(z) \text{ at the poles of } f(z)\}$$

- 3. Prove that $\sum_{n=-\infty}^{\infty} \frac{1}{n^2 + a^2} = \frac{\pi}{a} \coth \pi a \text{ where } a > 0.$
- 4. Prove that $\sum_{n=1}^{\infty} \frac{1}{n^2 + a^2} = \frac{\pi}{2a} \coth \pi a \frac{1}{2a^2}$ where a > 0.
- 5. If f(z) satisfies the same conditions given in Exercise 2, prove that

$$\sum_{n=-\infty}^{\infty} (-1)^n f(n) = -\{\text{sum of residues of } \pi \csc \pi z f(z) \text{ at the poles of } f(z)\}$$

- 6. Prove that $\sum_{n=-\infty}^{\infty} \frac{(-1)^n}{(n+a)^2} = \frac{\pi^2 \cos \pi a}{\sin^2 \pi a}$ where a is real and different from $0, \pm 1, \pm 2, \cdots$.
- 7. Prove that $\frac{1}{1^3} \frac{1}{3^3} + \frac{1}{5^3} \frac{1}{7^3} + \dots = \frac{\pi^3}{32}$.
- 8. Prove that

$$\frac{\coth \pi}{1^3} + \frac{\coth 2\pi}{2^3} + \frac{\coth 3\pi}{3^3} + \dots = \frac{7\pi^3}{180}.$$

9. Prove that

(a)
$$\sum_{n=1}^{\infty} \frac{1}{(n^2+1)^2} = \frac{\pi}{4} \coth \pi + \frac{\pi^2}{4} \operatorname{csch}^2 \pi - \frac{1}{2}.$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}.$$

(c)
$$\sum_{n=1}^{\infty} \frac{1}{n^6} = \frac{\pi^6}{945}$$
.

$$(\mathrm{d})\ \sum_{n=1}^{\infty}\frac{(-1)^{n-1}n\sin n\theta}{n^2+\alpha^2}=\frac{\pi}{2}\frac{\sinh\alpha\theta}{\sinh\alpha\pi},\,-\pi<\theta<\pi.$$

(e)
$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{\pi^2}{12}$$
.

(f)
$$\sum_{n=-\infty}^{\infty} \frac{1}{n^4 + n^2 + 1} = \frac{\pi\sqrt{3}}{3} \tanh\left(\frac{\pi\sqrt{3}}{2}\right)$$
.

(g)
$$\frac{1}{1^5} - \frac{1}{3^5} + \frac{1}{5^5} - \frac{1}{7^5} + \dots = \frac{5\pi^5}{1536}$$
.

10. Use the theorem involving a single residue, to evaluate the integral of each of these functions around the circle |z| = 2 in the positive sense:

(a)
$$\frac{z^5}{1-z^3}$$
.

(b)
$$\frac{1}{1+z^2}$$
.

(c)
$$\frac{1}{z}$$
.

11. Let the degrees of the polynomials

$$P(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n, \ a_n \neq 0$$

and

$$Q(z) = b_0 + b_1 z + b_2 z^2 + \dots + b_m z^m, \ b_m \neq 0$$

be such that $m \ge n + 2$. Use the theorem involving a single residue, to show that if all of the zeros of Q(z) are interior to a simple closed contour C, then

$$\oint_C \frac{P(z)}{Q(z)} \, dz = 0.$$

12. Use the theorem involving a single residue, to evaluate the integral of f(z) around the positively oriented circle |z| = 3 when

2

(a)
$$f(z) = \frac{(3z+2)^2}{z(z-1)(2z+5)}$$
.

(b)
$$f(z) = \frac{z^3(1-3z)}{(1+z)(1+2z^4)}$$
.

(c)
$$f(z) = \frac{z^3 e^{\frac{1}{z}}}{1+z^3}$$
.

13. Prove that the sum of the residues of the function $\frac{2z^5 - 4z^2 + 5}{3z^6 - 8z + 10}$ at all the poles is $\frac{2}{3}$.

14. Evaluate
$$\oint_{|z|=3} \frac{z^5 \cos \frac{1}{z-2}}{(z^2+3)^4(z-5)} dz$$
.

15. Evaluate
$$\oint_{|z|=1} \frac{z^6}{1-2z^8} dz.$$

16. Evaluate
$$\oint_{|z|=528} \frac{z^{99}}{(z-1)(z-2)\cdots(z-100)} dz$$
.

17. Let F(s) be the Laplace transform of f(t). Using residues, find f(t) whenever

(a)
$$F(s) = \frac{2s^3}{s^4 - 4}$$
.

(b)
$$F(s) = \frac{2s-2}{(s+1)(s^2+2s+5)}$$
.

(c)
$$F(s) = \frac{12}{s^3 + 8}$$

(d)
$$F(s) = \frac{s^2 - a^2}{(s^2 + a^2)^2}, \ a > 0.$$

(e)
$$F(s) = \frac{8a^3s^2}{(s^2 + a^2)^3}, \ a > 0.$$

(f)
$$F(s) = \frac{\sinh(xs)}{s^2 \cosh s}$$
, $0 < x < 1$.

(g)
$$F(s) = \frac{1}{s \cosh(s^{\frac{1}{2}})}$$
.

(h)
$$F(s) = \frac{\coth(\pi s/2)}{s^2 + 1}$$
.

(i)
$$F(s) = \frac{\sinh(xs^{\frac{1}{2}})}{s^2 \sinh(s^{\frac{1}{2}})}, \ 0 < x < 1.$$

(j)
$$F(s) = \frac{1}{s^2} - \frac{1}{s \sinh s}$$

(k)
$$F(s) = \frac{\sinh(xs)}{s(s^2 + \omega^2)\cosh s}$$
, $0 < x < 1$, where $\omega > 0$ and $\omega \neq \omega_n = \frac{(2n-1)\pi}{2}$, $n = 1, 2, \cdots$.

(1)
$$F(s) = \frac{4s+3}{s^3+2s^2+s+2}$$
.

(m)
$$F(s) = \frac{1}{s^2 + 4}$$
.

(n)
$$F(s) = \frac{s+3}{(s-2)(s^2+1)}$$
.

(o)
$$F(s) = \frac{s^3 + s^2 - s + 3}{s^5 - s}$$

(p)
$$F(s) = \frac{s^3 + 2s^2 - s + 2}{s^5 - s}$$
.

(q)
$$F(s) = \frac{s^3 + 3s^2 - s + 1}{s^5 - s}$$
.

(r)
$$F(s) = \frac{s^3 + s^2 + s + 3}{s^5 - s}$$

(s)
$$F(s) = \frac{s^3 + 2s^2 + 4s + 2}{(s^2 + 1)(s^2 + 4)}$$
.