
MCS 352 2009-2010 Spring

Exercise Set XII

1. Find the residue at z = 0 of the function

(a)
1

z + z2
.

(b) z cos
(

1
z

)
.

(c)
z − sin z

z
.

(d)
cot z
z4

.

(e)
sinh z

z4(1− z2)
.

2. Use Cauchy’s residue theorem to evaluate the integral
of each of these functions around the circle |z| = 3 in
the positive sense:

(a)
e−z

z2
.

(b)
e−z

(z − 1)2
.

(c) z2e
1
z .

(d)
z + 1
z2 − 2z

.

3. Let C denote the circle |z| = 1, taken counterclock-
wise, and follow the steps below to show that

‰

C

exp
(
z +

1
z

)
dz = 2πi

∞∑
n=0

1
n!(n+ 1)!

.

(a) By using the Maclaurin series for ez and the
termwise integration, write the above integral as

∞∑
n=0

1
n!

‰

C

zn exp
(

1
z

)
dz.

(b) Apply Cauchy’s residue theorem to evaluate the
integrals appearing in part (a) to arrive at the
desired result.

4. In each case, find the isolated singularity of the given
function and determine whether that point is a pole,
a removable singular point, or an essential singular
point:

(a) ze
1
z .

(b)
z2

1 + z
.

(c)
sin z
z

.

(d)
cos z
z

.

(e)
1

(2− z)3
.

5. Show that the singular point of each of the following
functions is a pole. Determine the order of that pole
and the corresponding residue.

(a)
1− cosh z

z3
.

(b)
1− e2z

z4
.

(c)
e2z

(z − 1)2
.

6. Suppose that a function f is analytic at z0, write

g(z) =
f(z)
z − z0

. Show that

(a) if f(z0) 6= 0, then z0 is a simple pole of g, with
residue f(z0).

(b) if f(z0) = 0, then z0 is a removable singular
point of g.

7. Write the function

f(z) =
8a3z2

(z2 + a2)3
, a > 0

as

f(z) =
φ(z)

(z − ai)3
where φ(z) =

8a3z2

(z + ai)3
.

Point out why φ(z) has a Taylor series representa-
tion about z = ai, and then use it to show that the
principal part of f at that point is

φ′′(ai)/2
z − ai

+
φ′(ai)

(z − ai)2
+

φ(ai)
(z − ai)3

= − i/2
z − ai

− a/2
(z − ai)2

− a2i

(z − ai)3
.



8. In each case, show that any singular point of the func-
tion is a pole. Determine the order of each pole, and
find the corresponding residue.

(a)
z2 + 2
z − 1

.

(b)
(

z

2z + 1

)3

.

(c)
ez

z2 + π2
.

9. Show that

(a) Res
z=−1

z
1
4

z + 1
=

1 + i√
2

, 0 < arg z < 2π.

(b) Res
z=i

Log z
(z2 + 1)2

=
π + 2i

8
.

(c) Res
z=i

z
1
2

(z2 + 1)2
=

1− i
8
√

2
, 0 < arg z < 2π.

10. Find the value of the integral
‰

C

3z3 + 2
(z − 1)(z2 + 9)

dz,

taken counterclockwise around the circle

(a) |z − 2| = 2.

(b) |z| = 4.

11. Find the value of the integral
‰

C

1
z3(z + 4)

dz,

taken counterclockwise around the circle

(a) |z| = 2.

(b) |z + 2| = 3.

12. Evaluate the integral
‰

C

coshπz
z(z2 + 1)

dz

where C is the circle |z| = 2, described in the positive
sense.

13. Show that the point z = 0 is a simple pole of the
function

f(z) = csc z =
1

sin z
and that the residue there is unity.

14. Show that

(a) Res
z=πi

z − sinh z
z2 sinh z

=
i

π
.

(b) Res
z=πi

ezt

sinh z
+ Res
z=−πi

ezt

sinh z
= −2 cosπt.

15. Show that

(a) Res
z=zn

(z sec z) = (−1)n+1zn, where zn =
π

2
+

nπ, n = 0,±1,±2, · · · .

(b) Res
z=zn

(tanh z) = 1, where zn =
(π

2
+ nπ

)
i, n =

0,±1,±2, · · · .

16. Let C denote the positively oriented circle |z| = 2 and
evaluate the integral

(a)
‰

C

tan z dz.

(b)
‰

C

1
sinh 2z

dz.

17. Let CN denote the positively oriented boundary of
the square whose edges lie along the lines

x = ±
(
N +

1
2

)
π and y = ±

(
N +

1
2

)
π,

where N is a positive integer. Show that

‰

CN

dz

z2 sin z
= 2πi

[
1
6

+ 2
N∑
n=1

(−1)n

n2π2

]
.

Then, showing that the value of this integral tends to
zero as N tends to infinity, point out how it follows
that

∞∑
n=1

(−1)n+1

n2
=
π2

12
.

18. Show that
‰

C

dz

(z2 − 1)2 + 3
=

π

2
√

2
,

where C is the positively oriented boundary of the
rectangle whose sides lie along the lines x = ±2, y =
0, and y = 1.

19. Consider the function

f(z) =
1

[q(z)]2
,

where q is analytic at z0, q(z0) = 0, and q′(z0) 6= 0.
Show that z0 is a pole of order 2 of the function f ,

with residue − q′′(z0)
[q′(z0)]3

.
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20. Use the result in Exercise 19 to find the residue at
z = 0 of the function

(a) f(z) = csc2 z.

(b) f(z) =
1

(z + z2)2
.

21. Use residues to evaluate the improper integrals.

(a)
ˆ ∞

0

dx

x2 + 1
.

(b)
ˆ ∞

0

dx

(x2 + 1)2
.

(c)
ˆ ∞

0

dx

x4 + 1
.

(d)
ˆ ∞

0

x2

(x2 + 1)(x2 + 4)
dx.

(e)
ˆ ∞

0

x2

(x2 + 9)(x2 + 4)2
dx.

22. Use residues to find the Cauchy principal values of
the integrals.

(a)
ˆ ∞
−∞

dx

x2 + 2x+ 2
.

(b)
ˆ ∞
−∞

x

(x2 + 1)(x2 + 2x+ 2)
dx.

23. Use residues and the contour shown below, where R >
1, to establish the integration formula

ˆ ∞
0

dx

x3 + 1
=

2π
3
√

3
.

24. Let m and n be integers, where 0 ≤ m < n. Follow
the steps below to derive the integration formula

ˆ ∞
0

x2m

x2n + 1
dx =

π

2n
csc
(

2m+ 1
2n

π

)
.

(a) Show that the zeros of the polynomial z2n + 1
lying above the real axis are

ck = exp
[
i
(2k + 1)π

2n

]
,

k = 0, 1, 2, · · · , n−1, and that there are none on
that axis.

(b) Show that

Res
z=ck

z2m

z2n + 1
= − 1

2n
ei(2k+1)α,

k = 0, 1, 2, · · · , n − 1, where ck are the zeros
found in part (a) and

α =
2m+ 1

2n
π.

Then use the summation formula
n−1∑
k=0

zk =
1− zn

1− z
, z 6= 1

to obtain the expression

2πi
n−1∑
k=0

Res
z=ck

z2m

z2n + 1
=

π

n sinα
.

(c) Use the final result in part (b) to complete the
derivation of the integration formula.

25. The integration formula
ˆ ∞

0

dx

[(x2 − a)2 + 1]2

=
π

8
√

2A3
[(2a2 + 3)

√
A+ a+ a

√
A− a],

where a is any real number and A =
√
a2 + 1, arises

in the theory of case-hardening of steel by means of
radio-frequency heating. Follow the steps below to
derive it.

(a) Point out why the four zeros of the polynomial

q(z) = (z2 − a)2 + 1

are the square roots of the numbers a± i. Then,
showing that the numbers

z0 =
1√
2

(
√
A+ a+ i

√
A− a)

and −z0 are the square roots of a+ i, verify that
±z0 are the square roots of a− i and hence that
z0 and −z0 are the only zeros of q(z) in the upper
half-plane Im z ≥ 0.

(b) Using the method derived in Exercise 19, and
keeping in mind that z2

0 = a + i for purposes of
simplification, show that the point z0 in part (a)

is a pole of order 2 of the function f(z) =
1

[q(z)]2
and that the residue B1 at z0 can be written

B1 = − q′′(z0)
[q′(z0)]3

=
a− i(2a2 + 3)

16A2z0
.
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After observing that q′(−z) = −q′(z) and
q′′(−z) = −q′′(z), use the same method to show
that the point −z0 in part (a) is also a pole of
order 2 of the function f(z), with residue

B2 =
{
q′′(z0)

[q′(z0)]3

}
= −B1.

Then obtain the expression

B1 +B2 =
1

8A2i
Im
[
−a+ i(2a2 + 3)

z0

]
for the sum of the residues.

(c) Refer to part (a) and show that q(z) ≥ (R−|z0|)4

if |z| = R, where R > |z0|. Then, with the
aid of the final result in part (b), complete the
derivation of the integration formula.

26. Use residues to evaluate.

(a)
ˆ ∞
−∞

cosx
(x2 + a2)(x2 + b2)

dx, a > b > 0.

(b)
ˆ ∞

0

cos ax
x2 + 1

dx, a > 0.

(c)
ˆ ∞

0

cos ax
(x2 + b2)2

dx, a > 0, b > 0.

(d)
ˆ ∞

0

x sin 2x
x2 + 3

dx.

(e)
ˆ ∞
−∞

x sin ax
x4 + 4

dx, a > 0.

(f)
ˆ ∞
−∞

x3 sin ax
x4 + 4

dx, a > 0.

(g)
ˆ ∞
−∞

x sinx
(x2 + 1)(x2 + 4)

dx.

(h)
ˆ ∞

0

x3 sinx
(x2 + 1)(x2 + 9)

dx.

27. Use residues to find the Cauchy principal values of
the improper integrals.

(a)
ˆ ∞
−∞

sinx
x2 + 4x+ 5

dx.

(b)
ˆ ∞
−∞

(x+ 1) cosx
x2 + 4x+ 5

dx.

(c)
ˆ ∞
−∞

cosx
(x+ a)2 + b2

dx, b > 0.

28. Using the indented contour below

(a) derive the integration formulaˆ ∞
0

cos(ax)− cos(bx)
x2

dx =
π

2
(b− a)

a ≥ 0, b ≥ 0. Then, with the aid of the trigono-
metric identity 1− cos(2x) = 2 sin2 x, point out
how it follows thatˆ ∞

0

sin2 x

x2
dx =

π

2
.

(b) evaluate the improper integralˆ ∞
0

xa

(x2 + 1)2
dx,

where −1 < a < 3 and xa = exp(a lnx).
(c) use the function

f(z) =
z

1
3 log z
z2 + 1

=
e

1
3 log z log z
z2 + 1

,

|z| > 0, −π2 < arg z < 3π
2 , to derive this pair of

integration formulas:ˆ ∞
0

3
√
x lnx

x2 + 1
dx =

π2

6
,

and ˆ ∞
0

3
√
x

x2 + 1
dx =

π√
3
.

(d) use the function

f(z) =
(log z)2

z2 + 1
,

|z| > 0, −π2 < arg z < 3π
2 , to show that

ˆ ∞
0

(lnx)2

x2 + 1
dx =

π3

8
,

and ˆ ∞
0

lnx
x2 + 1

dx = 0.

29. Use the function

f(z) =
z

1
3

(z + a)(z + b)
=

e
1
3 log z

(z + a)(z + b)
,

|z| > 0, 0 < arg z < 2π, and closed contour similar to
the one below to show formally that
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ˆ ∞
0

3
√
x

(x+ a)(x+ b)
dx =

2π√
3

3
√
a− 3
√
b

a− b
,

a > b > 0.

30. Show that ˆ ∞
0

dx√
x(x2 + 1)

=
π√
2

by integrating an appropriate branch of the multival-
ued function

f(z) =
z−

1
2

z2 + 1
=
e−

1
2 log z

z2 + 1
over

(a) the indented path in Exercise 28.

(b) the closed contour in Exercise 29.

31. The beta function is this function of two variables

B(p, q) =
ˆ 1

0

tp−1(1− t)q−1 dt,

p > 0, q > 0. Make the substitution t =
1

x+ 1
and

use the result
ˆ ∞

0

xa

x+ 1
= − π

sin aπ
, −1 < a < 0,

obtained in class, to show that

B(p, 1− p) =
π

sin(pπ)
, 0 < p < 1.

32. Consider the two simple closed contours shown below
and obtained by dividing into two pieces the annulus
formed by the circles Cρ and CR in the picture used
in Exercise 29. The legs L and −L of those contours
are directed line segments along any ray arg z = θ0,
where π < θ0 <

3π
2 . Also, Γρ and γρ are the indicated

portions of Cρ, while ΓR and γR make up CR.

(a) Show how it follows from Cauchy’s residue the-
orem that when the branch

f1(z) =
z−a

z + 1
,

|z| > 0, −π2 < arg z < 3π
2 , of the multivalued

function
z−a

z + 1
is integrated around the closed

contour on the left of figure above,

ˆ R

ρ

r−a

r + 1
dr +

ˆ

ΓR

f1(z) dz +
ˆ

L

f1(z) dz

+
ˆ

Γρ

f1(z) dz = 2πi Res
z=−1

f1(z).

(b) Apply the Cauchy-Goursat theorem to the
branch

f2(z) =
z−a

z + 1
,

|z| > 0, π
2 < arg z < 5π

2 , of
z−a

z + 1
, integrated

around the closed contour on the right of figure
above, to show that

−
ˆ R

ρ

r−ae−i2aπ

r + 1
dr +

ˆ

γρ

f2(z) dz

−
ˆ

L

f2(z) dz +
ˆ

γR

f2(z) dz = 0.

(c) Point out why, in the last lines in parts (a) and

(b), the branches f1(z) and f2(z) of
z−a

z + 1
can

be replaced by the branch

f(z) =
z−a

z + 1

|z| > 0, 0 < arg z < 2π. Then, by adding corre-
sponding sides of those two lines, derive equation

ˆ R

ρ

r−a

r + 1
dr+

ˆ

CR

f(z) dz −
ˆ R

ρ

r−ae−i2aπ

r + 1
dr

+
ˆ

Cρ

f(z) dz = 2πi Res
z=−1

f1(z),

which was obtained only formally in class.

33. Use residues to evaluate

(a)
ˆ 2π

0

dθ

5 + 4 sin θ
.

(b)
ˆ π

−π

dθ

1 + sin2 θ
.

(c)
ˆ 2π

0

cos2 3θ dθ
5− 4 cos 2θ

.
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(d)
ˆ 2π

0

dθ

1 + a cos θ
, −1 < a < 1.

(e)
ˆ π

0

cos 2θ dθ
1− 2a cos θ + a2

, −1 < a < 1.

(f)
ˆ π

0

dθ

(a+ cos θ)2
, a > 1.

(g)
ˆ π

0

sin2n θ dθ, n = 1, 2, 3 · · · .

34. Let C denote the unit circle |z| = 1, described in the
positive sense. Determine the value of 4C arg f(z)
when

(a) f(z) = z2.

(b) f(z) =
z3 + 2
z

.

(c) f(z) =
(2z − 1)7

z3
.

35. Let f be a function which is analytic inside and on
a simple closed contour C, and suppose that f(z) is
never zero on C. Let the image of C under the trans-
formation w = f(z) be the closed contour Γ shown
below. Determine the value of 4C arg f(z) from that
figure; and determine the number of zeros, counting
multiplicities, of interior to C.

36. Suppose that a function f is analytic inside and on a
positively oriented simple closed contour C and that it
has no zeros on C. Show that if f has n zeros zk, k =
1, 2, · · · , n, inside C, where each zk is of multiplicity
mk, then

‰

C

zf ′(z)
f(z)

dz = 2πi
n∑
k=1

mkzk.

37. Determine the number of zeros, counting multiplici-
ties, of the polynomial

(a) z6 − 5z4 + z3 − 2z.

(b) 2z4 − 2z3 + 2z2 − 2z + 9.

inside the circle |z| = 1.

38. Determine the number of zeros, counting multiplici-
ties, of the polynomial

(a) z4 + 3z3 + 6.

(b) z4 − 2z3 + 9z2 + z − 1.

(c) z5 + 3z3 + z2 + 1.

inside the circle |z| = 2.

39. Determine the number of roots,counting multiplici-
ties, of the equation

2z5 − 6z2 + z + 1 = 0

in the annulus 1 ≤ |z| < 2.

40. Show that if c is a complex number such that |c| > e,
then the equation czn = ez has n roots, counting
multiplicities, inside the circle |z| = 1.
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