MCS 352 2009-2010 Spring
 Exercise Set X

1. Obtain the Maclaurin series representation

$$
z \cosh \left(z^{2}\right)=\sum_{n=0}^{\infty} \frac{z^{4 n+1}}{(2 n)!}, \quad z \in \mathbb{C} .
$$

2. Obtain the Taylor series

$$
e^{z}=e \sum_{n=0}^{\infty} \frac{(z-1)^{n}}{n!}, \quad z \in \mathbb{C}
$$

for the function $f(z)=e^{z}$ by
(a) using $f^{(n)}(1), n=0,1,2,3 \ldots$,
(b) writing $e^{z}=e^{z-1} e$.
3. Find the Maclaurin series expansion of the function

$$
f(z)=\frac{z}{z^{4}+9}
$$

4. Write the Maclaurin series representation of the function $f(z)=\sin \left(z^{2}\right)$, and point out how it follows that

$$
f^{(4 n)}(0)=0 \quad \text { and } \quad f^{(2 n+1)}(0)=0, n=0,1,2, \ldots
$$

5. With the aid of the identity

$$
\cos z=-\sin \left(z-\frac{\pi}{2}\right)
$$

expand $\cos z$ into a Taylor series about the point $z_{0}=\frac{\pi}{2}$.
6. Use the identity $\sinh (z+\pi i)=-\sinh z$, and the fact $\sinh z$ is periodic with period $2 \pi i$ to find the Taylor series for $\sinh z$ about the point $z_{0}=\pi i$.
7. What is the largest circle within which the Maclaurin series for the function tanh z converges to $\tanh z$? Write the first two nonzero terms of that series.
8. Show that when $z \neq 0$,
(a) $\frac{e^{z}}{z^{2}}=\frac{1}{z^{2}}+\frac{1}{z}+\frac{1}{2!}+\frac{z}{3!}+\frac{z^{2}}{4!}+\cdots$,
(b) $\frac{\sin \left(z^{2}\right)}{z^{4}}=\frac{1}{z^{2}}-\frac{z^{2}}{3!}+\frac{z^{6}}{5!}-\frac{z^{10}}{7!}+\cdots$.
9. Derive the expansions
(a) $\frac{\sinh z}{z^{2}}=\frac{1}{z}+\sum_{n=0}^{\infty} \frac{z^{2 n+1}}{(2 n+3)!},|z|>0$,
(b) $z^{3} \cosh \left(\frac{1}{z}\right)=\frac{z}{2}+z^{3}+\sum_{n=1}^{\infty} \frac{1}{(2 n+2)!} \cdot \frac{1}{z^{2 n-1}},|z|>0$.
10. Show that when $0<|z|<4$,

$$
\frac{1}{4 z-z^{2}}=\frac{1}{4 z}+\sum_{n=0}^{\infty} \frac{z^{n}}{4^{n+2}}
$$

11. Find the Laurent series that represent the function

$$
f(z)=z^{2} \sin \left(\frac{1}{z^{2}}\right)
$$

in the domain $0<|z|<\infty$.
12. Derive the Laurent series representation

$$
\frac{e^{z}}{(z+1)^{2}}=\frac{1}{e}\left[\sum_{n=0}^{\infty} \frac{(z+1)^{n}}{(n+2)!}+\frac{1}{z+1}+\frac{1}{(z+1)^{2}}\right], 0<|z+1|<\infty
$$

13. Find a representation for the function

$$
f(z)=\frac{1}{1+z}
$$

in negative powers of z that is valid when $1<|z|<\infty$.
14. Give two Laurent series expansions in powers of z for the function

$$
f(z)=\frac{1}{z^{2}(1-z)}
$$

and specify the regions in which those expansions are valid.
15. Represent the function

$$
f(z)=\frac{z+1}{z-1}
$$

(a) by its Maclaurin series, and state where the representation is valid,
(b) by its Laurent series in the domain $1<|z|<\infty$.
16. Show that when $0<|z-1|<2$,

$$
\frac{z}{(z-1)(z-3)}=-3 \sum_{n=0}^{\infty} \frac{(z-1)^{n}}{2^{n+2}}-\frac{1}{2(z-1)}
$$

17. Write the two Laurent series in powers of z that represents the function

$$
f(z)=\frac{1}{z\left(1+z^{2}\right)}
$$

in certain domains, and specify those domains.
18. (a) Let a denote a real number, where $-1<a<1$, and derive the Laurent series representation

$$
\frac{a}{z-a}=\sum_{n=1}^{\infty} \frac{a^{n}}{z^{n}}, \quad|a|<|z|<\infty
$$

(b) Write $z=e^{i \theta}$ in the equation obtained in part (a) and then equate real parts and imaginary parts on each side of the result to derive the summation formulas

$$
\sum_{n=1}^{\infty} a^{n} \cos n \theta=\frac{a \cos \theta-a^{2}}{1-2 a \cos \theta+a^{2}} \quad \text { and } \quad \sum_{n=1}^{\infty} a^{n} \sin n \theta=\frac{a \sin \theta}{1-2 a \cos \theta+a^{2}}
$$

where $-1<a<1$.
19. By differentiating the Maclaurin series representation

$$
\frac{1}{1-z}=\sum_{n=0}^{\infty} z^{n},|z|<1
$$

obtain the expansions

$$
\frac{1}{(1-z)^{2}}=\sum_{n=0}^{\infty}(n+1) z^{n},|z|<1
$$

and

$$
\frac{2}{(1-z)^{3}}=\sum_{n=0}^{\infty}(n+1)(n+2) z^{n},|z|<1
$$

20. By substituting $\frac{1}{1-z}$ for z in the expansion

$$
\frac{1}{(1-z)^{2}}=\sum_{n=0}^{\infty}(n+1) z^{n},|z|<1
$$

found in Exercise 19, derive the Laurent series representation

$$
\frac{1}{z^{2}}=\sum_{n=2}^{\infty} \frac{(-1)^{n}(n-1)}{(z-1)^{n}}, 1<|z-1|<\infty
$$

21. Find the Taylor series for the function

$$
\frac{1}{z}=\frac{1}{2+(z-2)}=\frac{1}{2} \cdot \frac{1}{1+(z-2) / 2}
$$

about the point $z_{0}=2$. Then, by differentiating that series term by term, show that

$$
\frac{1}{z^{2}}=\frac{1}{4} \sum_{n=0}^{\infty}(-1)^{n}(n+1)\left(\frac{z-2}{2}\right)^{n},|z-2|<2
$$

22. With the aid of series, prove that the function f defined by means of the equations

$$
f(z)=\left\{\begin{array}{ccc}
\frac{e^{z}-1}{z} & \text { when } & z \neq 0 \\
1 & \text { when } & z=0
\end{array}\right.
$$

is entire.
23. Prove that if

$$
f(z)=\left\{\begin{array}{ccc}
\frac{\cos z}{z^{2}-(\pi / 2)^{2}} & \text { when } & z \neq \pm \pi / 2 \\
-\frac{1}{\pi} & \text { when } & z= \pm \pi / 2
\end{array}\right.
$$

then f is an entire function.
24. In the w plane, integrate the Taylor series expansion

$$
\frac{1}{w}=\sum_{n=0}^{\infty}(-1)^{n}(w-1)^{n},|w-1|<1
$$

along a contour interior to the circle of convergence from $w=1$ to $w=z$ to obtain the representation

$$
\log z=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}(z-1)^{n},|z-1|<1
$$

25. Use the result in Exercise 24 to show that if

$$
f(z)=\left\{\begin{array}{ccc}
\frac{\log z}{z-1} & \text { when } & z \neq 1 \\
1 & \text { when } & z=1
\end{array}\right.
$$

then f is analytic throughout the domain $0<|z|<\infty,-\pi<\operatorname{Arg} z<\pi$.
26. Prove that if f is analytic at z_{0} and $f\left(z_{0}\right)=f^{\prime}\left(z_{0}\right)=\cdots=f^{(m)}\left(z_{0}\right)=0$, then the function g defined by the equations

$$
g(z)=\left\{\begin{array}{cc}
\frac{f(z)}{\left(z-z_{0}\right)^{m+1}} & \text { when } \quad z \neq z_{0} \\
\frac{f^{(m+1)}\left(z_{0}\right)}{(m+1)!} & \text { when } \quad z=z_{0}
\end{array}\right.
$$

is analytic at z_{0}.
27. Use multiplication of series to show that

$$
\frac{e^{z}}{z\left(z^{2}+1\right)}=\frac{1}{z}+1-\frac{1}{2} z-\frac{5}{6} z^{2}+\cdots \quad 0<|z|<1 .
$$

28. By writing $\csc z=\frac{1}{\sin z}$ and then using division, show that

$$
\csc z=\frac{1}{z}+\frac{1}{3!} z+\left[\frac{1}{(3!)^{2}}-\frac{1}{5!}\right] z^{3}+\cdots \quad 0<|z|<\pi
$$

29. Use division to obtain the Laurent series representation

$$
\frac{1}{e^{z}-1}=\frac{1}{z}-\frac{1}{2}+\frac{1}{12} z-\frac{1}{720} z^{3}+\cdots \quad 0<|z|<2 \pi
$$

30. Use the expansion

$$
\frac{1}{z^{2} \sinh z}=\frac{1}{z^{3}}-\frac{1}{6} \cdot \frac{1}{z}+\frac{7}{360} z+\cdots \quad 0<|z|<\pi
$$

to show that

$$
\oint_{C} \frac{d z}{z^{2} \sinh z}=-\frac{\pi i}{3}
$$

when C is the unit circle $|z|=1$.
31. Let $f(z)$ be an entire function that is represented by a series of the form

$$
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots \quad|z|<\infty
$$

(a) By differentiating the composite function $g(z)=f(f(z))$ successively, find the first three nonzero terms in the Maclaurin series for $g(z)$ and thus show that

$$
f(f(z))=z+2 a_{2} z^{2}+2\left(a_{2}^{2}+a_{3}\right) z^{3}+\cdots \quad|z|<\infty .
$$

(b) Obtain the result in part (a) in a formal manner by writing

$$
f(f(z))=f(z)+a_{2}(f(z))^{2}+a_{3}(f(z))^{3}+\cdots
$$

replacing $f(z)$ on the right-hand side here by its series representation, and then collecting terms in like powers of z.
(c) By applying the result in part (a) to the function $f(z)=\sin z$, show that

$$
\sin (\sin z)=z-\frac{1}{3} z^{3}+\cdots \quad|z|<\infty
$$

32. The Euler numbers are the numbers $E_{n}, n=0,1,2, \cdots$ in the Maclaurin series representation

$$
\frac{1}{\cosh z}=\sum_{n=0}^{\infty} \frac{E_{n}}{n!} z^{n}, \quad|z|<\frac{\pi}{2}
$$

Point out why this representation is valid in the indicated disk and why

$$
E_{2 n+1}=0, \quad n=0,1,2, \cdots
$$

Then show that

$$
E_{0}=1, E_{2}=-1, E_{4}=5, E_{6}=-61
$$

