MCS 352 2009-2010 Spring

Exercise Set I

- 1. Reduce each of these quantities to a real number
 - (a) $\frac{1+2i}{3-4i} + \frac{2-i}{5i}$.
 - (b) $\frac{5i}{(1-i)(2-i)(3-i)}$.
 - (c) $(1-i)^4$.
- 2. In each case, sketch the set of points determined by the given condition.
 - (a) |z 1 + i| = 1.
 - (b) $|z+i| \le 3$.
 - (c) $|z 4i| \ge 4$.
 - (d) |z 4i| + |z + 4i| = 10.
 - (e) |z-1| = |z+i|.
- 3. Show that.
 - (a) $\overline{z} + 3i = z 3i$.
 - (b) $\overline{i}\overline{z} = -i\overline{z}$.
 - (c) $\overline{(2+i)^2} = 3-4i$.
 - (d) $|(2\overline{z}+5)(\sqrt{2}-i)| = \sqrt{3}|2z+5|$.
- 4. In each case, sketch the set of points determined by the given condition.
 - (a) $\operatorname{Re}(\overline{z} i) = 2$.
 - (b) |2z i| = 4.
- 5. Show that

$$\left| \frac{z_1 + z_2}{z_3 + z_4} \right| \le \frac{|z_1| + |z_2|}{||z_3| - |z_4||}$$

whenever $|z_3| \neq |z_4|$.

6. Show that

$$\left| \frac{1}{z^4 - 4z^2 + 3} \right| \le \frac{1}{3}$$

if z lies on the circle |z|=2.

- 7. Find $\operatorname{Arg} z$, if
 - (a) $z = \frac{i}{-2 2i}$.
 - (b) $z = (\sqrt{3} i)^6$.

- 8. Find a value of θ in the interval $0 \le \theta < 2\pi$ that satisfies the equation $|e^{i\theta} 1| = 2$.
- 9. Use de Moivre's formula to derive the following trigonometric identities.
 - (a) $\cos 3\theta = \cos^3 \theta 3\cos\theta\sin^2\theta$.
 - (b) $\sin 3\theta = 3\cos^2 \theta \sin \theta \sin^3 \theta$.
- 10. By writing the individual factors on the left in exponential form, performing the needed operations, and finally changing back to rectangular coordinates, show that
 - (a) $i(1 \sqrt{3}i)(\sqrt{3} + i) = 2(1 + \sqrt{3}i)$.
 - (b) $\frac{5i}{2+i} = 1+2i$.
 - (c) $(-1+i)^7 = -8(1+i)$.
 - (d) $(1+\sqrt{3}i)^{-10} = 2^{-11}(-1+\sqrt{3}i)$.
- 11. Find the square roots of
 - (a) 2i.
 - (b) $1 \sqrt{3}i$.

and express them in rectangular coordinates.

- 12. In each case, find all of the roots in rectangular coordinates and exhibit them as vertices of certain squares.
 - (a) $(-16)^{\frac{1}{4}}$.
 - (b) $(-8 8\sqrt{3}i)^{\frac{1}{4}}$.
- 13. Sketch the following sets and determine which are domains.
 - (a) $|z 2 + i| \le 1$.
 - (b) |2z+3| > 4.
 - (c) Im z > 1.
 - (d) Im z = 1.
 - (e) $0 \le \arg z \le \frac{\pi}{4} \ (z \ne 0)$.
 - (f) |z-4| > |z|.
- 14. Which sets in Exercise 13 are neither open nor closed?
- 15. Which sets in Exercise 13 are bounded?
- 16. Determine the accumulation points of each of the following sets.

- (a) $z_n = i^n, \ n = 1, 2, \cdots$
- (b) $z_n = \frac{i^n}{n}, \ n = 1, 2, \cdots$
- (c) $0 \le \arg z < \frac{\pi}{2} \ (z \ne 0)$.
- (d) $z_n = (-1)^n (1+i) \frac{n-1}{n}, \ n = 1, 2, \cdots$
- 17. Express in the form a + bi.
 - (a) $\frac{1}{6+2i}$.
 - (b) $\frac{(2+i)(3+2i)}{1-i}$
 - (c) $\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^4$.
 - (d) i^n , $n \in \mathbb{Z}$.
- 18. Find (in rectangular form) the two values of $\sqrt{-8+6i}$.
- 19. Show that the n-th roots of 1 (aside from 1) satisfy the cyclotomic equation

$$z^{n-1} + z^{n-2} + \dots + z + 1 = 0.$$

- 20. Describe the sets whose points satisfy the following relations.
 - (a) $|z i| \le 1$.
 - (b) $\left| \frac{z-1}{z+1} \right| = 1.$
 - (c) |z-2| > |z-3|.
 - (d) $\frac{1}{z} = \overline{z}$.
 - (e) |z| < 1 and Im z > 0.
 - (f) $|z|^2 = \text{Im } z$.
 - (g) $|z^2 1| < 1$.
- 21. Perform the required calculations and express your answers in the form a + bi.
 - (a) i^{275} .
 - (b) $\frac{1}{i^5}$.
 - (c) Re(i).
 - (d) Im(2).
 - (e) $(i-1)^3$.
 - (f) (7-2i)(3i+5).
 - (g) Re(7+6i) + Im(5-4i).
 - (h) $\operatorname{Im}\left(\frac{1+2i}{3-4i}\right)$.
 - (i) $\frac{(4-i)(1-3i)}{-1+2i}$.
 - (j) $\overline{(1+i\sqrt{3})(i+\sqrt{3})}$.
- 22. Evaluate the following quantities.

- (a) $\overline{(1+i)(2+i)}(3+i)$
- (b) $\frac{3+i}{2+i}$.
- (c) $Re((i-1)^3)$
- (d) $\operatorname{Im}((1+i)^{-2})$.
- (e) $\frac{1+2i}{3-4i} \frac{4-3i}{2-i}$.
- (f) $(1+i)^{-2}$
- (g) $\operatorname{Re}((x-iy)^2)$.
- (h) $\operatorname{Im}\left(\frac{1}{x-iy}\right)$.
- (i) $\operatorname{Re}((x+iy)(x-iy))$.
- (j) $Im((x+iy)^3)$.
- 23. Evaluate the following quantities.
 - (a) |(1+i)(2+i)|.
 - (b) $\left| \frac{4-3i}{2-i} \right|$.
 - (c) $|z\bar{z}|$, where z = x + iy.
 - (d) $|z-1|^2$, where z = x + iy.
- 24. Which of the following points lie inside the circle |z i| = 2? Explain.
 - (a) $\frac{1}{2} + i$.
 - (b) $\sqrt{2} + i(\sqrt{2} + 1)$.
 - (c) 2 + 3i.
 - (d) $-\frac{1}{2} + i\sqrt{3}$.
- 25. Prove that $\sqrt{2}|z| \ge |\operatorname{Re}(z)| + |\operatorname{Im}(z)|$.
- 26. Show that $|z_1 z_2| \le |z_1| + |z_2|$.
- 27. Show that $||z_1| |z_2|| \le |z_1 z_2|$.
- 28. Find $\operatorname{Arg} z$ for the following values of z.
 - (a) 1 i.
 - (b) $-\sqrt{3} + i$.
 - (c) $(-1 i\sqrt{3})^2$.
 - (d) $(1-i)^3$.
 - (e) $\frac{2}{1+i\sqrt{3}}$.
 - (f) $\frac{2}{i-1}$.
 - (g) $\frac{1+i\sqrt{3}}{(1+i)^2}$.
 - (h) $(1+i\sqrt{3})(1+i)$.
- 29. Use exponential notation to show that
 - (a) $(\sqrt{3} i)(1 + i\sqrt{3}) = 2\sqrt{3} + 2i$.
 - (b) $(1+i)^3 = -2 + 2i$.

- (c) $2i(\sqrt{3}+i)(1+i\sqrt{3}) = -8$.
- (d) $\frac{8}{1+i} = 4-4i$.
- 30. Represent the following complex numbers in polar form.
 - (a) -4.
 - (b) 6 6i.
 - (c) -7i.
 - (d) $-2\sqrt{3} 2i$.
 - (e) $\frac{1}{(1-i)^2}$.
 - (f) $\frac{6}{i+\sqrt{3}}$.
 - (g) 3 + 4i.
 - (h) $(5+5i)^3$.
- 31. Express the following in a + bi form.
 - (a) $e^{\frac{i\pi}{2}}$.
 - (b) $4e^{-\frac{i\pi}{2}}$.
 - (c) $8e^{\frac{7\pi i}{3}}$.
 - (d) $-2e^{\frac{5\pi i}{6}}$
 - (e) $2ie^{-\frac{3\pi i}{4}}$.
 - (f) $6e^{\frac{2\pi i}{3}}e^{\pi i}$.
 - (g) $e^2 e^{\pi i}$.
 - (h) $e^{\frac{\pi i}{4}}e^{-\pi i}$.
- 32. Calculate the following.
 - (a) $(1 i\sqrt{3})^3(\sqrt{3} + i)^2$.
 - (b) $\frac{(1+i)^3}{(1-i)^5}$.
 - (c) $(\sqrt{3}+i)^6$.
- 33. Let z be any nonzero complex number and let n be an integer. Show that $z^n + (\bar{z})^n$ is a real number.
- 34. Find all the roots in both polar and Cartesian form for each expression.
 - (a) $(-2+2i)^{\frac{1}{3}}$.
 - (b) $(-1)^{\frac{1}{5}}$.
 - (c) $(-64)^{\frac{1}{4}}$.
 - (d) $(8)^{\frac{1}{6}}$.
 - (e) $(16i)^{\frac{1}{4}}$.
- 35. Find the three solutions to $z^{\frac{3}{2}} = 4\sqrt{2} + i4\sqrt{2}$.
- 36. Find a parametrization of the line that
 - (a) joins the origin to the point 1+i.
 - (b) joins the point 1 to the point 1+i.

- (c) joins the point i to the point 1+i.
- (d) joins the point 2 to the point 1+i.
- 37. Sketch the curve $z(t) = t^2 + 2t + i(t+1)$
 - (a) for $-1 \le t \le 0$.
 - (b) for $1 \le t \le 2$.
- 38. Find a parametrization of the curve that is a portion of the parabola $y = x^2$ that
 - (a) joins the origin to the point 2 + 4i.
 - (b) joins the point -1 + i to the origin.
 - (c) joins the point 1+i to the origin.
- 39. Find a parametrization of the curve that is a portion of the circle |z| = 1 that joins the point -i to i if
 - (a) the curve is the right semicircle.
 - (b) the curve is the left semicircle.
- 40. Find a parametrization of the curve that is a portion of the circle |z| = 1 that joins the point 1 to i if
 - (a) the parametrization is counterclockwise along the quarter circle.
 - (b) the parametrization is clockwise.
- 41. Consider the following sets.
 - (i) $\{z : \text{Re}(z) > 1\}.$
 - (ii) $\{z : -1 < \text{Im}(z) \le 2\}.$
 - (iii) $\{z : |z-2-i| \le 2\}.$
 - (iv) $\{z : |z+3i| > 1\}.$
 - $\text{(v) } \Big\{ r e^{i\theta} \ : \ 0 < r < 1, \ -\frac{\pi}{2} < \theta < \frac{\pi}{2} \Big\}.$
 - $\mbox{(vi) } \Big\{re^{i\theta} \ : \ r>1, \ -\frac{\pi}{4}<\theta<\frac{\pi}{3}\Big\}.$
 - (vii) $\{z : |z| < 1 \text{ or } |z 4| < 1\}.$
 - (a) Sketch each set.
 - (b) State, with reasons, which of the following terms apply to the above sets: open; connected; domain; region; closed region; bounded.